
邵学广:博士,南开大学教授,博士生导师。《Chemometrics and Intelligent Laboratory Systems》、《高等学校化学学报》、《分析化学》等多种期刊的编委会委员、中国化学会理事、计算机化学专业委员会主任委员、有机分析专业委员会委员、中国仪器仪表学会近红外光谱分会副理事长、天津市分析测试协会副理事长。2002年获教育部第三届高校青年教师奖,2003年获国家自然科学基金委杰出青年基金,2010年获宝钢优秀教师奖,2012年获国务院政府特殊津贴,2018年获中国仪器仪表学会“陆婉珍近红外光谱科技奖”。
主要从事化学计量学及其在化学领域中的应用研究。先后开展了化学因子分析、优化算法、免疫算法、小波分析等方面的研究工作,建立了一系列复杂分析化学信号分析方法以及用于近红外光谱信号处理和建模的化学计量学方法,为复杂体系近红外光谱快速分析和产品质量评价等建立了新方法。近年来主要开展温控近红外光谱、水光谱探针等方面的研究工作,开拓了化学计量学的应用领域以及近红外光谱的研究领域。在国内外学术期刊上发表SCI论文300余篇,编著、翻译或合作出版学术著作5部。
(1) 2024-2027,国家自然科学基金,面上项目,水光谱与超声生物成像人工智能方法研究,项目负责人。
(2) 2024-2026,国家重点研发计划,荧光纳米复合探针对病原菌特异性识别新策略及机制研究,主要参加。
(3) 2024-2026,国家自然科学基金,中韩国际合作与交流项目,高维光谱数据测量与人工智能分析方法研究,项目负责人。
(4) 2022-2025,国家自然科学基金,面上项目,近红外水光谱探针与化学计量学信息提取方法研究,项目负责人。
(5) 2018-2021,国家自然科学基金,面上项目,近红外水光谱组学方法与应用研究,项目负责人。
(6) 2015-2018,国家自然科学基金,面上项目,温控近红外光谱及相关的化学计量学方法研究,项目负责人。
(7) 2014-2017,国家重大科学仪器设备开发专项,光栅型近红外分析仪及其共用模型开发和应用-(基于高维形象几何分析的NIR分析技术研究与软件开发),主要参加。
(8) 2012-2015,国家自然科学基金,面上项目,复杂体系GC-MS高通量分析方法研究,项目负责人。
(9) 2009-2012,国家自然科学基金,重点项目,复杂基质样品的稳健分析方法研究,项目负责人。
(10) 2008-2010,科技部国际合作专项,肿瘤拉曼散射诊断仪信号处理技术研究,项目负责人。
2020年以来主要成果:
(1) Ma, B.; Chen, N. N.; Cai, W. S.; Shao, X. G.* Understanding the protein conformation transition within polymer hydrogels using a near-infrared water spectroscopy probe. Int. J. Biol. Macromol. 2025, 290, 138995.
(2) Su, C. L.; Cai, W. S.; Shao, X. G..* Water as a probe for the temperature-induced self-assembly transition of an amphiphilic copolymer. Chin. Chem. Lett. 2025, 36, 110095.
(3) Zhou, H. X.; Fu, H. H.;* Shao, X. G.;* Cai, W. S.* Identification of novel inhibitors for epidermal growth factor receptor tyrosine kinase using absolute binding free-energy simulations. Int. J. Biol. Macromol. 2025, 304, 140989.
(4) Liu, X.Y.; An, H. L.; Cai, W. S.*; Shao, X. G.* Deep Learning in Spectral Analysis: Modeling and Imaging. TrAC, Trends Anal. Chem. 2024, 172, 117612.
(5) An, H. L.; Liu, X. Y.; Cai, W. S.; Shao, X. G.* Explainable Graph Neural Networks with Data Augmentation for Predicting pKa of C−H Acids. J. Chem. Inf. Model. 2024, 64(7), 2383−2392.
(6) Duan, C. S.;# Liu, X. Y.;# Cai, W. S.; Shao, X. G.* Interpretable perturbator for variable selection in near-infrared spectral analysis. J. Chem. Inf. Model. 2024, 64(7), 2508−2514.
(7) Liu, X. Y.; Xing, J. Y.; Fu, H. H.; Shao, X. G.;* Cai, W. S.* Analyzing Molecular Dynamics Trajectories Thermodynamically through Artificial Intelligence. J. Chem. Theory Comput. 2024, 20(2), 665−676.
(8) Shao, D. H.; Zhang, Z. T.; Liu, X. Y.; Fu, H. H.;* Shao, X. G.;* Cai, W. S.* Screening Fast-mode Motion in Collective Variable Discovery for Biochemical Processes. J. Chem. Theory Comput. 2024, 20(23), 10393-10405.
(9) Fu, H. H.; Bian, H. W.; Shao, X. G.;* Cai, W. S.* Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning. J. Phys. Chem. Lett. 2024, 15(6), 1774−1783.
(10) Hao, Y. L.; Liu, X. Y.; Fu, H. H.; Shao, X. G.*; Cai, W. S.* PGAT-ABPp: harnessing protein language models and graph attention networks for antibacterial peptide identification with remarkable accuracy. Bioinformatics, 2024, 40(8), btae497.
(11) Su, C. L; Wang, H. P.; Cai, W. S.*; Shao, X. G.* Ice growth inhibition by poly(vinyl alcohol): Insights from near-infrared spectroscopy and molecular dynamics simulation. J. Mol. Liq. 2024, 402, 124795.
(12) An, H. L.; Liu, X. Y.; Cai, W. S.*; Shao, X. G.* AttenGpKa: A Universal Predictor of Solvation Acidity Using Graph Neural Network and Molecular Topology. J. Chem. Inf. Model. 2024, 64(14), 5480-5491.
(13) Wang, H. P.; Han, L.; Cai, W. S.; Shao, X. G.* Chemometrics: A Vital Implement for Understanding the Water Structures by Near-Infrared Spectroscopy. J. Chemometr. 2024; 38(12), e3631.
(14) Liu, X. Y.; Duan, C. S.; Cai, W. S.; Shao, X. G.* Unmixing Autoencoder for Image Reconstruction from Hyperspectral Data. Anal. Chem. 2024, 96(52), 20354-20361.
(15) Han, L.; Wang, H. P.; Cai, W.; Shao, X. G.* Mechanism of Binding of Polyproline to Ice via Interfacial Water: An Experimental and Theoretical Study. J. Phys. Chem. Lett. 2023, 14, 4127−4133.
(16) Han, L.; Sun, Y.; Wang, Y.; Fu, H. H.; Duan, C. S.; Wang, M.; Cai, W. S.; Shao, X. G.* Ultra-high resolution near-infrared spectrum by wavelet packet transform revealing the hydrogen bond interactions. Spectrochim. Acta, Part A, 2023, 289, 122233.
(17) Wang, M.; An, H. L.; Cai, W. S.; Shao, X. G.* Wavelet Transform Makes Water an Outstanding Near-Infrared Spectroscopic Probe. Chemosensors, 2023, 11(1), 37.
(18) Xu, X.; Han, L.; Zheng, Z.;* Zhao, R.; Li, L. J.; Shao, X. G.; Li.; G. Y.* Composite Multidimensional Ion Mobility-Mass Spectrometry for Improved Differentiation of Stereochemical Modifications. Anal. Chem. 2023, 95(4), 2221−2228.
(19) Han, L.; Sun, Y.; Cai, W. S.; Shao, X. G. Seeking the structure of water from the combination of bending and stretching vibrations in near infrared spectra. J. Near Infrared Spec. 2023, 31(4), 204-210.
(20) Li, J. N.; Liang, F. F.; Han, L.; Yu, X. X.; Liu, D. B.; Cai, W. S.; Shao, X. G. Determination of Extra- and Intra-Cellular pH Using Characteristic Absorption of Water by Near-Infrared Spectroscopy. Chemosensors, 2023, 11(8), 425.
(21) Fu, H. H.; Chipot, C.; Shao, X. G.;* Cai, W. S.* Achieving Accurate Standard Protein−Protein Binding Free Energy Calculations through the Geometrical Route and Ergodic Sampling. J. Chem. Inf. Model. 2023, 63(8), 2512−2519.
(22) Su, T.; Sun, Y.; Han, L.; Cai, W. S; Shao, X. G.* Revealing the interactions of water with cryoprotectant and protein by near–infrared spectroscopy. Spectrochim. Acta, Part A, 2022, 266, 120417.
(23) Wang, S. Y.; Wang, M.; Han, L.; Sun, Y.; Cai, W. S; Shao, X. G.* Insight into the stability of protein in confined environment through analyzing the structure of water by temperature-dependent near-infrared spectroscopy. Spectrochim. Acta, Part A, 2022, 267, 120581.
(24) Chen, H. C.; Liu, H.; Feng, H. Y.; Fu, H. H.; Cai, W. S.;* Shao, X. G.;* Chipot, C.* MLCV: Bridging Machine-Learning-Based Dimensionality Reduction and Free-Energy Calculation. J. Chem. Inf. Model. 2022, 62, 1−8.
(25) Fu, H. H.; Zhou, Y.; Jing, X.; Shao, X. G.;* Cai, W. S.* Meta-Analysis Reveals That Absolute Binding Free-Energy Calculations Approach Chemical Accuracy. J. Med. Chem. 2022, 65, 12970−12978.
(26) Wang, K.; Shao, X. G.;* Cai, W. S.* Binding Models of Aβ42 Peptide with Membranes Explored by Molecular Simulations. J. Chem. Inf. Model. 2022, 62, 6482−6493.
(27) Liu, H.; Fu, H. H.; Chipot, C.;* Shao, X. G.;* Cai, W. S.* Accurate Description of Solvent-Exposed Salt Bridges with a Non-Polarizable Force Field Incorporating Solvent Effects. J. Chem. Inf. Model. 2022, 62, 3863−3873.
(28) Cui, S. L.; Zhang, W. J.; Shao, X. G.;* Cai, W. S.* Hyperactive Antifreeze Proteins Promote Ice Growth before Binding to It. J. Chem. Inf. Model. 2022, 62, 5165−5174.
(29) Zong Z. Y.; Mazurkewich S.; Pereira C. S.; Fu, H. H.; Cai, W. S.; Shao, X. G.; Skaf, M. S.; Larsbrink, J.; Lo Leggio L. Mechanism and biomass association of glucuronoyl esterase: An α/β hydrolase with potential in biomass conversion. Nat. Commun. 2022, 13, 1449.
(30) Duan, C. S.; Liu, X. Y.; Cai, W. S.; Shao. X. G.* Spectral Encoder to Extract the Features of Near-Infrared Spectra for Multivariate Calibration. J. Chem. Inf. Model. 2022, 62(16), 3695−3703.
(31) Han, L.; Sun, Y.; Wang, S. Y.; Su, T.; Cai, W. S.; Shao, X. G.* Understanding the water structures by near-infrared and Raman spectroscopy. J Raman Spectrosc. 2022,53(10), 1686-1693.
(32) Fu, H. H.; Chen, H. C.; Blazhynska, M.; Goulard Coderc de Lacam, E.; Szczepaniak, F.; Pavlova, A.; Shao, X. G.; Gumbart, J. C.; Dehez, F.; Roux, B.; Cai, W.S.;* Chipot, C.* Accurate Determination of Protein: Ligand Standard Binding Free Energies from Molecular Dynamics Simulations. Nat. Protoc. 2022, 17(4), 1114-1141.
(33) 刘煦阳,段潮舒,蔡文生,邵学广*,可解释深度学习在光谱和医学影像分析中的应用,化学进展,2022, 34(12), 2561-2572.
(34) Zhang, H.; Guo, Y. C.; Chipot, C.; Cai, W. S.;* Shao, X. G.* Nanomachine-Assisted Ion Transport Across Membranes: From Mechanism to Rational Design and Applications. J. Phys. Chem. Lett. 2021, 12(13), 3281-3287.
(35) Fu, H. H.; Chipot, C.; Cai, W. S.;* Shao, X. G.* Repurposing Existing Molecular Machines through Accurate Regulation of Cooperative Motions. J. Phys. Chem. Lett. 2021, 12(1), 613-619.
(36) Fu, H. H.; Chen, H. C.; Cai, W. S.;* Shao, X. G.;* Chipot, C.* BFEE2: Automated, Streamlined, and Accurate Absolute Binding Free-Energy Calculations. J. Chem. Inf. Model. 2021, 61(5), 2116-2123.
(37) Chen, H. C.; Fu, H. H.; Chipot, C.;* Shao, X. G.;* Cai W. S.* Overcoming Free-Energy Barriers with a Seamless Combination of a Biasing Force and a Collective Variable-Independent Boost Potential. J. Chem. Theory Comput. 2021, 17, 3886−3894.
(38) Liu, H.; Fu, H. H.; Chipot, C.;* Shao, X. G.;* Cai, W. S.* Accuracy of Alternate Non-Polarizable Force Fields for the Determination of Protein–Ligand Binding Affinities Dominated by Cation–π Interactions. J. Chem. Theory Comput. 2021, 17, 3908−3915.
(39) Zhang, J.; Guo, C.; Cai, W. S.; Shao, X. G*. Direct non-trilinear decomposition for analyzing high-dimensional data with imperfect trilinearity. Chemom. Intell. Lab. Syst. 2021, 210, 104244.
(40) Ma, B.; Wang, L.; Han, L.; Cai, W. S.; Shao, X. G.* Understanding the effect of urea on the phase transition of poly(N-isopropylacrylamide) in aqueous solution by temperature-dependent near-infrared spectroscopy. Spectrochim. Acta, Part A 2021, 253, 119573.
(41) Sun, Y.; Li, M.; Cai, W. S.; Shao, X. G.* Interaction between tau and water during the induced aggregation revealed by near-infrared spectroscopy. Spectrochim. Acta, Part A. 2020, 230, 118046.
(42) Sun, Y.; Cui, X. Y.; Cai, W. S.; Shao, X. G.* Understanding the complexity of the structures in alcohol solutions by temperature–dependent near–infrared spectroscopy. Spectrochim. Acta, Part A. 2020, 229, 117864.
(43) Han, L.; Cui, X. Y.; Cai, W. S.; Shao, X. G.* Three–level simultaneous component analysis for analyzing the near–infrared spectra of aqueous solutions under multiple perturbations. Talanta 2020, 217, 121036.
(44) Tan, J. H.; Sun, Y.; Ma, L.; Feng, H. Y.; Guo, Y. C.; Cai, W. S.; Shao, X. G. Knowledge-based genetic algorithm for resolving the near-infrared spectrum and understanding the water structures in aqueous solution. Chemometr. Intell. Lab. Syst. 2020, 206, 104150.
(45) Zhang, C.; Cui, X. Y.; Yang, J.; Shao, X. G.; Zhang, Y. Y.; Liu, D. B. Stimulus-responsive surface-enhanced Raman scattering: A “Trojan horse” strategy for precision molecular diagnosis of cancer. Chem. Sci. 2020, 11, 6111–6120.
(46) Liu, H.; Fu, H. H.; Shao, X. G.;* Cai, W. S.;* Chipot, C.* Accurate Description of Cation−π Interactions in Proteins with a Nonpolarizable Force Field at No Additional Cost. J. Chem. Theory Comput. 2020, 16, 6397−6407.
(47) Fu, H. H.; Chen, H. C.; Wang, X. A.; Chai, H.; Shao, X. G.;* Cai, W. S.;* Chipot, C.* Finding an Optimal Pathway on a Multidimensional Free-Energy Landscape. J. Chem. Inf. Model. 2020, 60, 5366–5374.
发明专利:
(1) 邵学广,段潮舒,蔡文生,基于多元光学计算的近红外光谱测试方法,2022-12-13,中国,ZL202011200158.5
(2) 邵学广,段潮舒,蔡文生,基于模式序列生成近红外光谱数据的方法,2022-12-27,中国,ZL202011181348.7
南开大学是教育部直属重点综合性大学,是敬爱的周恩来总理的母校。新中国成立以来,学校发展始终得到党和国家的亲切关怀。毛泽东主席题写校名、亲临视察;周恩来总理三回母校指导;邓小平同志会见数学大师陈省身,批示成立南开数学研究所;江泽民同志、胡锦涛同志先后视察南开。特别是党的十八大以来,习近平总书记多次对南开的发展给予肯定,并对相关工作回信和勉励,更在百年校庆之际亲临南开视察。
南开大学由严修、张伯苓秉承教育救国理念创办,肇始于1904年,成立于1919年。1937年校园遭侵华日军炸毁,学校南迁。1938年与北京大学、清华大学合组西南联合大学,被誉为“学府北辰”。1946年回津复校并改为国立。
新中国成立后,经历高等教育院系调整,成为文理并重的全国重点大学。改革开放以来,天津对外贸易学院、中国旅游管理干部学院相继并入,经教育部与天津市共建支持,学校发展成为国家“211工程”和“985工程”重点建设的综合性研究型大学。2015年9月,新校区建成启用后,初步形成了八里台校区、津南校区、泰达学院“一校三区”办学格局。2017年9月,入选国家42所世界一流大学建设高校,且为36所A类高校之一。
南开大学坚持“允公允能,日新月异”的校训,弘扬“爱国、敬业、创新、乐群”的传统和“文以治国、理以强国、商以富国”的理念,以“知中国,服务中国”为宗旨,以杰出校友周恩来为楷模,作育英才,繁荣学术,强国兴邦,传承文明,努力建设世界一流大学。
南开大学占地443.12万平方米,其中八里台校区占地121.60万平方米,津南校区占地245.89万平方米,泰达学院占地6.72万平方米。校舍建筑总面积195.19万平方米。按照“独立办学、紧密合作”的原则,与天津大学全面合作办学。
南开大学是国内学科门类齐全的综合性、研究型大学之一。在长期办学过程中,形成了文理并重、基础宽厚、突出应用与创新的办学特色。有专业学院26个,学科门类覆盖文、史、哲、经、管、法、理、工、农、医、教、艺等。
南开大学拥有一支公能兼备、业务精湛、奋发有为、充满活力的师资队伍。有专任教师2202人。其中,博士生导师885人、硕士生导师783人,教授898人、副教授857人。
南开大学具备培养学士、硕士和博士的完整教育体系。有在校学生31418人,其中本科生17005人,硕士研究生10299人,博士研究生4114人。有网络专科学生40230人,网络本科学生73029人。
学校积极构建和发展适应21世纪经济社会发展和人才培养需要的学科体系,有本科专业93个(其中国家级特色专业18个),硕士学位授权一级学科11个,硕士专业学位授权点27个,博士学位授权一级学科31个,不在一级学科覆盖下的二级博士点1个,博士后科研流动站28个。有国家“双一流”建设学科5个,一级学科国家重点学科6个(覆盖35个二级学科),二级学科国家重点学科9个,一级学科天津市重点学科32个,国家级一流本科专业建设点21个,省级一流本科专业建设点2个。有国家重点实验室2个,国家工程研究中心1个,国家地方联合工程研究中心1个,2011协同创新中心3个。教育部重点实验室7个,教育部工程研究中心3个,教育部国际合作联合实验室2个,国家环境保护重点实验室1个,国家人权教育与培训基地1个,教育部人文社会科学重点研究基地6个,省部共建协同创新中心1个,教育部国别和区域研究基地7个(培育基地1个、备案基地6个),示范性国家国际科技合作基地4个。国家级实验教学示范中心5个,国家级虚拟仿真实验教学中心2个,国家虚拟仿真实验教学项目2项,国家基础学科人才培养和科学研究基地9个,国家教材建设重点研究基地1个,国家大学生文化素质教育基地1个,中华传统文化传承基地2个,国家创新人才培养示范基地1个。天津市重点实验室20个,天津市工程技术中心4个,天津市普通高等学校实验教学示范中心14个,天津市普通高等学校实验教学示范中心建设单位1个,天津市国际科技合作基地22个,天津市人文社科重点研究基地9个,天津市高校智库8个,天津市社科实验室5个,天津市爱国主义教育基地1个。
有中国科学院院士11人,中国工程院院士4人,发展中国家科学院院士8人,教育部“长江学者奖励计划”特聘教授44人、青年学者19人,“国家杰出青年科学基金”获得者57人、“国家优秀青年科学基金”获得者39人,国家“万人计划”领军人才27人、青年拔尖人才15人,国家“百千万人才工程”入选者30人,教育部“跨世纪人才基金”获得者21人、“新世纪优秀人才支持计划”入选者158人,国家级有突出贡献的专家22人,国务院学位委员会学科评议组成员16人,国家自然科学基金创新研究群体负责人6人,“国家高技术研究发展计划(863计划)”首席科学家3人,“国家重点基础研究发展计划(973计划)”首席科学家15人,国家重点研发计划项目负责人24人。国家级教学名师奖获得者7人,国家级教学团队9个,教育部“高校青年教师奖”获得者8人。天津市杰出人才8人,天津市“人才发展特殊支持计划”领军人才3人、青年拔尖人才11人、高层次创新创业团队带头人11人,天津市有突出贡献专家7人,天津市杰出津门学者3人,天津市“131”创新人才培养工程第一层次人选63人、创新型人才团队带头人17人,“天津市杰出青年科学基金”获得者40人,天津市级教学名师奖获得者35人,天津市级教学团队18个。
南开大学既是教学中心,又是科研中心,取得了一批国内外公认的优秀成果。2019年,周其林院士领衔完成的“高效手性螺环催化剂的发现”项目获国家自然科学奖一等奖。2007—2018年以第一单位获得国家自然科学二等奖4项,国家科技进步二等奖1项,国家技术发明二等奖1项。获国家教学成果奖46项,国家级精品资源共享课31门,国家级精品视频公开课15门,国家级一流本科课程31门,中国专利优秀奖1项,中国青年科技奖2项,全国百篇优秀博士论文累计入选20篇。2018年以来,南开学者团队以第一完成单位在Science上发表研究论文6篇。
南开大学秉承“知中国,服务中国”的优良传统,立足“四个服务”职责使命,聚焦“一带一路”、京津冀协同发展、雄安新区建设等国家和区域发展战略,积极发挥学科、人才和技术优势,努力为国家和地方经济社会发展服务。习近平新时代中国特色社会主义思想研究院、21世纪马克思主义研究院、亚太经济合作组织研究中心、中国新一代人工智能发展战略研究院、经济与社会发展研究院、滨海开发研究院、人权研究中心、津南研究院、统计研究院、生态文明研究院等研究机构是国家有关部委和地方政府的“智囊团”和“人才库”。学校按照“国家急需,世界一流”的原则,全面对接“创新驱动发展”战略、“中国制造2025”等的实施,积极推动各类协同创新中心和若干高层次交叉科学中心建设,与一批高校、企业、科研院所、政府部门建立了紧密合作关系。
南开大学重视学生德、智、体、美、劳全面发展,构建南开特色的“公能”素质教育体系,探索“课堂教学-校园文化-社会实践”三位一体育人模式。以“注重素质、培养能力、强化基础、拓宽专业、严格管理、保证质量”为教学指导思想,实行弹性学制、学分制、主辅修制、双学位制。注重培育优良校风,大力加强校园文化建设,为学生营造丰富高雅、活泼向上的成长氛围。推进创新创业教育,开办“创业班”,推进“南开大学学生创新创业实践基地”建设,提升学生创新能力,助力学生创业计划落地。大力开展“师生同行”社会实践,搭建师生“受教育、长才干、作贡献”的互动平台。南开毕业生以专业基础扎实、综合素质全面、富于开拓精神和实践能力而受到社会各界青睐。
南开大学有着广泛的国际影响,与320多所国际知名大学和国际学术机构建立了合作与交流关系;有专兼职外国专家400余人,以及来自114个国家和地区的2000余名留学生在校学习;承建了英国格拉斯哥大学孔子学院等8所海外孔子学院;与英国牛津大学、伯明翰大学、韩国SK集团共建国际联合研究中心;与世界经济论坛(达沃斯论坛)、全球大学领导者论坛(GULF)、国际公立大学联盟(IFPU)、国际大学联合会(IAU)、世界工程组织联合会(WFEO)等国际组织保持着密切联系,通过积极参与各类国际组织活动,进一步推动与世界一流大学、机构的实质性、深层次合作。
南开大学先后授予数学家陈省身、物理学家吴大猷、经济学家扬·米尔达尔、美国科学院院士蒋-卡洛·若塔、哈佛大学医学院教授摩斯·居达·福克曼、台湾海基会前董事长江丙坤、美国莱斯大学校长李达伟、世界经济论坛主席克劳斯·施瓦布、新加坡总统陈庆炎、法国宪法委员会主席洛朗·法比尤斯等10位国际著名人士名誉博士称号。诺贝尔奖获得者杨振宁、李政道、罗伯特·蒙代尔、彼得·杜赫提、卡尔·巴里·夏普莱斯、弗农·洛马克斯·史密斯、罗伯特·恩格尔、巴里·詹姆斯·马歇尔、托马斯·萨金特,美国前国务卿基辛格,韩国前总统金大中,欧盟委员会前主席、意大利前总理罗马诺·普罗迪,著名作家金庸等被聘为名誉教授,一批海内外知名学者、著名政治家、企业家任客座教授、兼职教授。
南开大学将深入贯彻落实习近平总书记来校视察重要讲话精神,全面贯彻党的教育方针,坚持社会主义办学方向,落实立德树人根本任务,践行“四个服务”重要使命,加快建设南开品格、中国特色、世界一流大学,培养德智体美劳全面发展的社会主义建设者和接班人,为实现中华民族伟大复兴做出新一代南开人的历史贡献。
(数据截至2020年12月)