导师风采
吴强
浏览量:807   转发量:7

个人信息

Personal Information

  • 教授
  • 导师类别:硕士,博士生导师
  • 性别: 男
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:物理科学学院
  • 所属专业: 光学  、 凝聚态物理  、 光子学与光子技术
  • 邮箱 : wuqiang@nankai.edu.cn
  • 工作电话 : -

个人简介

Personal Profile

​吴强,男,1976年生,南开大学教授,博士生导师,物理学院“伯苓班”(国家拔尖人才培养计划)班导师,天津市物理学会副秘书长、光电学会主任,中国激光杂志社青年编委,激光与光电子学进展编委,Scientific Reports(Nature publication group)编委。2000年毕业于南开大学物理科学学院,获得理学学士学位;2005年毕业于南开大学物理科学学院凝聚态物理专业,师从许京军教授,获得理学博士学位。2007年1月至2008年4月先后在塔夫茨(Tufts)大学和麻省理工学院(MIT)做博士后研究工作,合作导师Keith A. Nelson教授。目前主要从事超快光子学、光电材料与器件方面的研究工作和教育教学的研究工作。在太赫兹声子极化激元、飞秒激光改性材料及器件方面有一系列的研究成果,发表SCI学术论文八十余篇、获得授权发明专利十余项(其中1项为美国专利,1项为欧洲专利)。教育教学论文五篇。主持“973”计划(南开部分)1项,国家自然科学基金3项,天津市自然基金1项等多个项目。以科研成果为依托,创办天津创珪科技有限公司。


  • 研究方向Research Directions
超快光子学与应用,光电材料与器件,太赫兹,光电探测器,打通理论—实验—技术—应用的研究脉络,追求写进教科书或者变成产品的结果。
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
团队展示

本科生、研究生、博士后:研究生和博士后的招收,倾心于理论物理、光电器件、材料、凝聚态物理、光学与光子学等方面的才俊。同时,欢迎本科生的加入。课题组追求能够写进教科书或者变成产品的研究结果,努力打通基础物理——实验创新——技术突破——实际应用的研究脉络。在这个链条上,每个人都可以寻找属于自己的位置。

Group photo 2020 (与蔡卫教授课题组合影)

Group photo 2017入学

Group photo 2017毕业

Group photo 2016

Group photo 2015

Group photo 2013

Group photo 2011

Group photo 2010

Group photo 2008


科研项目

课题组在研项目:国家自然科学基金2项,XX课题1项,横向课题1项。同时作为骨干参与国际科技合作基地及111引智基地(111计划)和创新团队发展计划等项目。可以满足同学们正常的科研和学术会议交流等需求。

作为负责人主持或骨干结题多项科研课题,包括国家重点基础研究发展计划(973计划)项,南开大学光学与光子学创新团队、国家自然科学基金、天津市自然基金等。


研究成果

本科生、研究生、博士后:研究生和博士后的招收,倾心于理论物理、光电器件、材料、凝聚态物理、光学与光子学等方面的才俊。同时,欢迎本科生的加入。

       我们课题组的研究工作力图做到两点(显然还没有完全达到^V^):一、有特色的开创性;所以有些小众,关注点和切入点与流行风尚保持一定的距离。二、科学知识的探索性研究和实际应用的技术研发相结合,形成了基础物理、实验探索、应用开发相结合的研究链条;所以是多学科的交叉,研究既需要一定的深度也需要一定的广度。

       我们的研究方向主要集中在飞秒激光与晶体材料的作用上,尤其注重对瞬态元激发的理解和应用,涉及超快光子学、超快光学、太赫兹光学、光电材料与器件、微纳光子学、凝聚态物理等方面。在该研究方向上,有两方面的研究内容:一是飞秒激光改性晶体的物理机理、材料制备及其器件应用;二是铁电晶体中飞秒激光激发太赫兹声子极化激元的物理与应用。

 目前,比较有代表性的结果有:

一、飞秒激光改性晶体材料的物理机理

       在前人的基础上,我们发展了三维双温德鲁得模型,并考虑声子等元激发的作用,提出了竞争模型,解释了飞秒激光与晶体材料作用的一些基本规律。在竞争模型和材料改性过程中等离子体性质的研究基础上,建立飞秒激光改性硅材料的微观机制框架。

       基于对声子等元激发的理解,实现了飞秒激光改性晶体材料过程中的元激发的调控与应用。实验结果证明了物理模型的正确性,并大幅提高了改性材料的质量和制备的光电探测器、微纳结构器件的性能。

参考文献:

1. M. Yang, Q. Wu*, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse, Optics Letters 39, 343-346 (2014).

2. Z. Chen, Q. Wu*, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser and Particle Beams 31, 539-545 (2013).

3. Z. Jia, Q. Wu*, X. Jin, S. Huang, J. Li, M. Yang, H. Huang, J. Yao, and J. Xu, Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure, Optics Express 28, 5239-5247 (2020).

5. Y. Li, Q. Wu*, M. Yang*, Q. Li, Z. Chen, C. Zhang, J. Sun, J. Yao, and J. Xu, Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3: Fe crystal surface via femtosecond laser ablation, Applied Surface Science 478, 779-783 (2019).

6. Q. Li, Q. Wu*, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, and J. Xu, Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating, Photonics Research 6, 789-793 (2018).

7. Z. Li, Q. Wu*,    X. Hu, X. Jiang, J. Zhang, C. Pan, J. Yao, and J. Xu, Crack-free    femtosecond laser processing of lithium niobate benefited by high    substrate temperature, Journal of Applied Physics 129, 063102 (2021).

二、飞秒激光改性硅光电探测器(欢迎产业界合作

       经过十年的不懈努力,课题组已经形成了飞秒激光改性硅材料加工、材料后处理、光电探测器制备的全工艺线,并形成了飞秒激光与硅材料瞬态相互作用、材料性质与物理模型、光电探测器制备物理问题与器件模型的研究链。在此基础上,建立了新的工艺线,制备的硅光电探测器、柔性硅光电探测器的绝大部分核心指标是目前产业界和文献报道的最优值,具有良好的产业价值。

参考文献:

1. L. Zhao, Q. Wu*, Q. Zeng, J. Yao, X. Zhang, and J. Xu, Sulfur-hyperdoped silicon photodetector with broadband spectral response and high gain at low bias, in Conference on Lasers and Electro-Optics, OSA Technical Digest (2016) (Optical Society of America, 2016), paper JTh2A.37.

2. S. Huang, Q. Wu*, Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, and J. Xu, Black Silicon Photodetector with Excellent Comprehensive Properties by Rapid Thermal Annealing and Hydrogenated Surface Passivation, Advanced Optical Materials, 1901808 (2020).

3. Z. Jia, Q. Wu*, X. Jin, S. Huang, J. Li, M. Yang, H. Huang, J. Yao, and J. Xu, Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure, Optics Express 28, 5239-5247 (2020).

4. X. Jin, Y. Sun, Q. Wu*, Z. Jia, S. Huang, J. Yao, H. Huang, and J. Xu*, High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon, ACS applied materials & interfaces 11, 42385-42391 (2019).(Supplementary Cover)

5. X. Jin, Q. Wu*,   S. Huang, G. Deng, J. Yao, H. Huang, P. Zhao, and J. Xu,   High-performance black silicon photodetectors operating over a wide   temperature range, Optical Materials 113, 110874 (2021).

6. S. Huang, Q. Wu*,  Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, and J. Xu, Black  silicon photodetector with excellent comprehensive properties by rapid  thermal annealing and hydrogenated surface passivation, Advanced Optical  Materials 8, 1901808 (2020).

7.吴强、赵丽、马寅星、杨明、陈战东、潘玉松、栗瑜梅、姚江宏、张心正、许京军,一种高增益可见和近红外硅基光电探测器及其制备方法,发明专利,专利号:ZL201410012447.0。

8.吴强、曾强、张春玲、姚江宏、刘丹、齐继伟、许京军,一种表面过饱和掺杂光电探测器的钝化方法,发明专利,专利号: ZL201710127413. X。

9.吴强、孙玉琪、进晓荣、贾子熙、黄松、李志轩、张春玲、姚江宏、许京军,一种自支撑高增益柔性硅基光电探测器的制备方法,发明专利,专利号:ZL201910939440.6。

10. 吴强、贾子熙、进晓荣、黄松、杨明、张春玲、姚江宏、许京军,一种对半导体表面过饱和掺杂且保持其晶格结构的制备方法,发明专利,专利号:ZL2018111703583。

三、太赫波的时空超分辨成像、荧光四维成像(时间分辨三维空间荧光成像)

        发展了太赫兹波的时空超分辨成像系统,实现了定量分析,并进一步提高了成像质量。目前空间分辨率是太赫兹波长的几十分之一,时间分辨率是一个太赫兹电磁振荡周期的十分之一,实现了时空的超分辨成像和定量分析。

       结合宽场荧光寿命成像技术和远程重聚焦系统,搭建了一套时间分辨三维荧光光谱系统。这套系统可以在不扰动样品的情况下,实现空间三维、时间分辨的光谱成像。这套系统的时间分辨率可以达到30皮秒,空间分辨率1微米,光谱范围从300 nm至900 nm。该系统有望在物理、化学、生物等方面的瞬态研究中得到应用。

参考文献:

1. Q. Wu, Q. Chen, B. Zhang, and J. Xu, Terahertz phonon polariton imaging, Frontiers of Physics 8, 217-227 (2013).

2. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Optics express 17, 9219-9225 (2009).

3. C. Yang, Q. Wu*, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010).

4. C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3, JOSA B 27, 2350-2359 (2010).

5. Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy, Optics express 20, 960-965 (2012).

四、基于铌酸锂亚波长晶片的太赫兹集成与应用(欢迎产业界合作

       电子学和光子学的发展日益完善,使得科研工作者们把目光集中在频段介于两者之间曾经被称为“太赫兹空白”的太赫兹技术和科学。很多太赫兹波独有的优势被挖掘出来,例如无损探测、生物成像、天文研究和远距离通讯等。鉴于这些优势,人们开始寻求一个太赫兹的集成化平台,像电子学的集成电路和光子学中的光子集成回路那样,使太赫兹波的产生、传输、调控、探测等过程以及太赫兹波和物质或结构的作用过程在同一个平台上实现,以利于太赫兹技术的实际应用。

       利用亚波长铌酸锂晶片作为基质材料,我们实现了太赫兹波的产生、传输、调控、探测、与物质或微结构的相互作用等功能的片上集成。这样形成的太赫兹芯片是太赫兹波应用的一种有效方式。近期,在灵敏传感探测、片上集成太赫兹时域光谱、未来片上通讯(beyond 6G)等方面都展现了非常令人兴奋的潜在应用。

参考文献:

1. R. Wang, Q. Wu*, W. Cai*, Q. Zhang, H. Xiong, B. Zhang, J. Qi, J. Yao, and J. Xu*, Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface, ACS Photonics 6, 1774-1779 (2019).(Front Cover)

2. R. Wang, Q. Wu*, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai*, J. Yao, and J. Xu*, Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures, Applied Physics Letters 114, 121102 (2019).(Editor’s Pick,Top Articles of Photonics and Optoelectrics of APL)

3.吴强、王日德、张亚卿、徐西坦、张斌、姚江宏、许京军,一种基于超表面和铌酸锂混合结构的片上太赫兹传感增强器件,发明专利,专利号:ZL2019100216390。

4.吴强、王日德、张琦、张斌、赵文娟、齐继伟、姚江宏、许京军,一种结合渐变超表面和亚波长波导的片上宽带太赫兹单向传输器,发明专利,专利号:ZL2018111769025。

5.吴强、杨慧梅、卢瑶、潘崇佩、齐继伟、张春玲、姚江宏、许京军,一种基于亚波长波导的窄带太赫兹波产生及检测的方法,发明专利,专利号: ZL201710345527.

延伸参考文献:

1. W. Zhao, J. Qi*, Y. Lu, R. Wang, Q. Zhang, H. Xiong, Y. Zhang, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency in THz metamaterial on a LiNbO 3 subwavelength planar waveguide, Optics express 27, 7373-7383 (2019).

2. Q. Zhang, J. Qi*, Y. Lu, H. Xiong, D. Zhang, W. Zhao, R. Wang, B. Zhang, Q. Wu*, and J. Xu, Cavity-cavity coupling based on a terahertz rectangular subwavelength waveguide, Journal of Applied Physics 126, 063103 (2019).

3. R. Wang, Q. Wu*, Q. Zhang, Y. Lu, W. Zhao, W. Cai*, J. Qi, J. Yao, and J. Xu, Conversion from terahertz-guided waves to surface waves with metasurface, Optics express 26, 31233-31243 (2018).

4. Q. Zhang, J. Qi*, Q. Wu*, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO3 slab waveguide with a composite antenna structure, Scientific reports 7, 1-7 (2017).

5. H. Yang, J. Qi, C. Pan, Y. Lu, Q. Wu*, J. Yao*, and J. Xu, Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide, Optics express 25, 14766-14773 (2017).

6. C. Pan, Q. Wu*, Q. Zhang, W. Zhao, J. Qi*, J. Yao, C. Zhang, W. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors, Optics express 25, 9768-9777 (2017).

7. B. Zhang, Q. Wu*, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO 3 sub-wavelength slab waveguide, Optics express 23, 16042-16051 (2015).

8. H. Xiong, Y. Lu*, Q. Wu*, Z. Li, J. Qi, X. Xu, R. Ma, and J. Xu*, Topological Valley Transport of Terahertz Phonon–Polaritons in a LiNbO3 Chip, ACS Photonics 8, 9, 2737–2745 (2021).

五、亚波长瞬态光学、光子学与元激发的非线性物理和量子物理

       基于铌酸锂太赫兹芯片的时空超分辨成像系统,我们展开了亚波长瞬态光学、光子学的研究和元激发(主要指声子极化激元)的非线性物理和量子物理的研究。这个工作不仅可以开发新的方程和理论,纠正教科书中公式的适用范围,同时也是众多实际应用研究的理论基础。

        例如,随着纳米光子学的发展,对于稳态亚波长光学的研究,尤其是在各向同性的材料中,利用数值软件可以进行非常优秀的模拟、设计和分析。但是,有些瞬态过程的实验结果不仅与数值模拟不符,而且与人们的直觉认识也不一样。我们发现,亚波长波导的耦合过程中,达到稳态模式后,还需要在时间上经历一定的阻尼振荡过程;对于亚波长矩形波导,教科书中最普遍使用的Marcatili方法不再适用等。如果再考虑晶体的各向异性,再考虑光和物质相互作用中的物质方程的瞬态作用,物理问题变得更加复杂。这个领域充满了未知!

亚波长瞬态光学的推荐文献:

1. Y. Lu, Q. Wu*, Q. Zhang, R.-D. Wang, B. Zhang*, W.-J. Zhao, D. Zhang, H. Xiong, C.-L. Yang, and J.-W. Qi, Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides, Frontiers of Physics 14, 42502 (2019).(Recommended & Letter)

2. Y. Lu, Q. Wu*, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, Journal of Applied Physics 123, 223103 (2018).

3.C. Yang, Q. Wu*, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010).

4. Y. Lu, Q. Zhang, Q. Wu*,  Z. Chen*, X. Liu, and J. Xu*, Giant enhancement of THz-frequency  optical nonlinearity by phonon polariton in ionic crystals, Nature  communications 12, 1-8 (2021).

5. Y. Lu, Q. Wu*,  H. Xiong, S. Huang, C. Pan, B. Zhang, J. Qi, Z. Chen*, J. Xu*,  “Observation of “Frozen-Phase” Propagation of THz Pulses in a Dispersive  Optical System,” Laser & Photonics Reviews, 2000591 (2021).

其它请参考三、四中的文献


论文

2021年

1. Y. Lu, Q. Zhang, Q. Wu*, Z. Chen*, X. Liu, and J. Xu*, Giant enhancement of THz-frequency optical nonlinearity by phonon polariton in ionic crystals, Nature communications 12, 1-8 (2021).

2. Y. Lu, Q. Wu*, H. Xiong, S. Huang, C. Pan, B. Zhang, J. Qi, Z. Chen*, J. Xu*, “Observation of “Frozen-Phase” Propagation of THz Pulses in a Dispersive Optical System,” Laser & Photonics Reviews, 2000591 (2021).

3. X. Jin, Q. Wu*, S. Huang, G. Deng, J. Yao, H. Huang, P. Zhao, and J. Xu, High-performance black silicon photodetectors operating over a wide temperature range, Optical Materials 113, 110874 (2021).

4. Z. Li, Q. Wu*, X. Hu, X. Jiang, J. Zhang, C. Pan, J. Yao, and J. Xu, Crack-free femtosecond laser processing of lithium niobate benefited by high substrate temperature, Journal of Applied Physics 129, 063102 (2021).

5.  H. Xiong, Y. Lu*, Q. Wu*, Z. Li, J. Qi, X. Xu, R. Ma, and J. Xu*, Topological Valley Transport of Terahertz Phonon–Polaritons in a LiNbO3 Chip, ACS Photonics 8, 9, 2737–2745 (2021).

6.  Y. Liu, Y. Wang, M. Yang*, Q. Wu*, Z. Li, C. Zhang*, J. Zhang, J. Yao, and J. Xu, Deep-subwavelength ripples on the ZnO surface obtained via metal-film-assisted femtosecond laser processing, Applied Surface Science (2021).

2020年

1.S. Huang, Q. Wu*, Z. Jia, X. Jin, X. Fu, H. Huang, X. Zhang, J. Yao, and J. Xu, Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation, Advanced Optical Materials 8, 1901808 (2020).

2.Z. Jia, Q. Wu*, X. Jin, S. Huang, J. Li, M. Yang, H. Huang, J. Yao, and J. Xu, Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure, Optics express 28, 5239-5247 (2020).

3.S. Huang, G. Deng, X. Jin, Y. Lu, G. Song, H. Huang, P. Zhao, C. Zhang, J. Yao, Q. Wu*, and J. Xu, The dark current suppression of black silicon photodetector by a lateral heterojunction, Optical Materials 110, 110474 (2020).

4.S. Wang, Q. Wu*, J. Zheng*, B. Zhang, S. Huang, Z. Jia, J. Yao, Q. Zhou, L. Yang, and J. Xu, Well-aligned periodic germanium nanoisland arrays with large areas and improved field emission performance induced by femtosecond laser, Applied Surface Science 508, 145308 (2020).

5.进晓荣,吴强*,黄松,贾子熙,宋冠廷,周旭,姚江宏,许京军, “飞秒激光过饱和掺杂硅基光电探测器研究进展”,激光与光电子学进展 57(11)111430 2020。

6.R. Li, C. Pang, Z. Li, M. Yang, H. Amekura, N. Dong, J. Wang, F. Ren, Q. Wu, and F. Chen, Ultrafast Saturable Absorbers: Fused Silica with Embedded 2D‐Like Ag Nanoparticle Monolayer: Tunable Saturable Absorbers by Interparticle Spacing Manipulation, Laser & Photonics Reviews 14, 2070014 (2020).

7.S. Wang, Q. Wu, J. Zheng, B. Zhang, J. Yao, Q. Zhou, L. Yang, J. Xu, and B. Cheng, GeSn/GeSiSn double-heterojunction short channel tunnel field-effect transistor design, Japanese Journal of Applied Physics 59, 034001 (2020).

8.Y. Meng, Z. Liu, Z. Xie, R. Wang, T. Qi, F. Hu, H. Kim, Q. Xiao, X. Fu, Q. Wu, S. Bae, M. Gong, and X. Yuan, Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface, Photon. Res. 8, 564-576 (2020)

9.Y. Lu, Q. Wu*, H. Xiong, Z. Chen, and J. Xu, Giant nonlinearity of THz waves mediated by photon-phonon strong coupling, in CLEO: QELS_Fundamental Science(Optical Society of America2020), p. FF2Q. 2. (美国光学学会奖:Presenter Fee Grant from the OSA Foundation and the Incubic/Milton Chang Travel Fund)

10.X. Jin, Q. Wu*, Z. Jia, S. Huang, J. Yao, and J. Xu, Sulfur-Hyperdoped Silicon-Based Flexible Photodetector with Excellent Comprehensive Performance, in CLEO: Applications and Technology(Optical Society of America2020), p. ATu3K. 5.

7.Z. Li, J. Li, Q. Wu*, X. Hu, X. Jiang, H. Xiong, J. Yao, and J. Xu, Regulating the Fs-laser Material Removal Mechanism to Improve Processing Quality Effectively, in CLEO: Applications and Technology(Optical Society of America2020), p. JW2B. 18.

9.Y. Lu, H. Xiong, Q. Wu*, and J. Xu, Propagation phase elimination of light pulses by an initial phase-locked synchronized moving source, in 2020 Conference on Lasers and Electro-Optics (CLEO)(IEEE2020), pp. 1-2.

14.H. Xiong, Y. Lu, Q. Wu*, and J. Xu, Demonstration of highly unidirectional edge states in terahertz slab waveguides, in 2020 Conference on Lasers and Electro-Optics (CLEO)(IEEE2020), pp. 1-2.

10.Y. Meng, Z. Liu, R. Wang, T. Qi, F. Hu, Q. Wu, Q. Xiao, S.-H. Bae, H. Kim, and M. Gong, On-chip mode-controlled waveguiding and versatile multiwavelength light routing using chip-integrated dielectric metasurface for arbitrary polarizations, in CLEO: Science and Innovations(Optical Society of America2020), p. JTh2B. 1.

2019年

1.X. Jin, Y. Sun, Q. Wu*, Z. Jia, S. Huang, J. Yao, H. Huang, and J. Xu*, High-Performance Free-Standing Flexible Photodetectors Based on Sulfur-Hyperdoped Ultrathin Silicon, ACS applied materials & interfaces 11, 42385-42391 (2019).(Supplementary Cover)

2.R. Wang, Q. Wu*, W. Cai*, Q. Zhang, H. Xiong, B. Zhang, J. Qi, J. Yao, and J. Xu*, Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface, ACS Photonics 6, 1774-1779 (2019).(Front Cover)

3.Y. Li, Q. Wu*, M. Yang*, Q. Li, Z. Chen, C. Zhang, J. Sun, J. Yao, and J. Xu, Uniform deep-subwavelength ripples produced on temperature controlled LiNbO3: Fe crystal surface via femtosecond laser ablation, Applied Surface Science 478, 779-783 (2019).

4.Y. Lu, Q. Wu*, Q. Zhang, R.-D. Wang, B. Zhang*, W.-J. Zhao, D. Zhang, H. Xiong, C.-L. Yang, and J.-W. Qi, Time-resolved imaging of mode-conversion process of terahertz transients in subwavelength waveguides, Frontiers of Physics 14, 42502 (2019).(Recommend & Letter)

5.R. Wang, Q. Wu*, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai*, J. Yao, and J. Xu*, Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures, Applied Physics Letters 114, 121102 (2019).(Editor’s Pick, Top Articles of Photonics and Optoelectrics of APL)

6.H. Xiong, Q. Wu*, Y. Lu, R. Wang, Q. Zhang, J. Qi, J. Yao, and J. Xu, Polarization-resolved edge states in terahertz topological photonic crystal, Optics express 27, 22819-22826 (2019).(Editor’s Pick)

7.张琦, 吴强*, 张斌, 潘崇佩, 王日德, 卢瑶, 齐继伟, 许京军, 铌酸锂芯片上的太赫兹集成和时空超分辨成像, 中国激光46, 24-37 (2019).(综述)

8.W. Zhao, J. Qi*, Y. Lu, R. Wang, Q. Zhang, H. Xiong, Y. Zhang, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency in THz metamaterial on a LiNbO 3 subwavelength planar waveguide, Optics express 27, 7373-7383 (2019).

9.Q. Zhang, J. Qi*, Y. Lu, H. Xiong, D. Zhang, W. Zhao, R. Wang, B. Zhang, Q. Wu*, and J. Xu, Cavity-cavity coupling based on a terahertz rectangular subwavelength waveguide, Journal of Applied Physics 126, 063103 (2019).

10.L. Cao, J. Qi, Q. Wu, Z. Li, R. Wang, J. Chen, Y. Lu, W. Zhao, J. Yao, and X. Yu, Giant Tunable Circular Dichroism of Large-Area Extrinsic Chiral Metal Nanocrescent Arrays, Nanoscale Research Letters 14, 388 (2019).

11.W. Zhao, Y. Lu, Q. Zhang, J. Qi, Q. Wu*, and J. Xu, On-chip plasmon-induced transparency using a meta-structure in THz regime, in CLEO: Science and Innovations(Optical Society of America2019), p. JTh2A. 15.

12.Q. Zhang, D. Zhang, J. Qi, Q. Wu*, Y. Lu, H. Xiong, W. Zhao, R. Wang, and J. Xu, Visualization of a cavity-cavity coupling in a LiNbO3 subwavelength waveguide at THz frequency, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 29.

13.R. Wang, Q. Wu*, Z. Jia, Y. Zhang, B. Zhang, W. Cai, and J. Xu, Linking guided waves and surface waves via metasurface on terahertz-integrated platform, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 12.

14.Y. Lu, H. Xiong, Q. Wu*, D. Zhang, Q. Zhang, R. Wang, W. Zhao, and J. Xu, Repair of pseudo time-reversal broken by topological phase transition in a photonic crystal slab, in CLEO: Applications and Technology(Optical Society of America2019), p. JTh2A. 30.

15.Z. Jia, Q. Wu*, R. Wang, X. Jin, S. Huang, J. Yao, and J. Xu, Single-crystalline Te-hyperdoped silicon via controlling the velocity of ultra-fast cooling during femtosecond-laser irradiation, in CLEO: Applications and Technology(Optical Society of America2019), p. ATu4I. 3.

16.Y. Li, Q. Wu*, Q. Li, Z. Li, M. Cao, C. Zhang, J. Yao, and J. Xu, Analysis on the evolution of subwavelength ripples fabricated by ultrafast laser pulses on lithium niobate crystal surface, in 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction-limited Plasmonic Lithography and Innovative Manufacturing Technology(International Society for Optics and Photonics2019), p. 108420A.

2019年以前发表论文节选(完整清单请见scholargoogle, ORCID: 0000-0003-3189-2219, 或researchgate https://www.researchgate.net/profile/Qiang_Wu17

55.W. Zhao, Q. Wu, R. Wang, J. Gao, Y. Lu, Q. Zhang, J. Qi, C. Zhang, C. Pan, and R. Rupp, Transient establishment of the wavefronts for negative, zero, and positive refraction, Optics express 26, 1954-1961 (2018).

54.X. Xu, B. Shi, X. Zhang, Y. Liu, W. Cai, M. Ren, X. Jiang, R. A. Rupp, Q. Wu, and J. Xu, Laser direct writing of graphene nanostructures beyond the diffraction limit by graphene oxidation, Optics express 26, 20726-20734 (2018).

53.Y. Wang, J. Qi, C. Pan, Q. Wu, J. Yao, Z. Chen, J. Chen, Y. Li, X. Yu, and Q. Sun, Giant circular dichroism of large-area extrinsic chiral metal nanocrecents, Scientific reports 8, 1-7 (2018).

52.R. Wang, Q. Wu, Q. Zhang, Y. Lu, W. Zhao, W. Cai, J. Qi, J. Yao, and J. Xu, Conversion from terahertz-guided waves to surface waves with metasurface, Optics express 26, 31233-31243 (2018).

51.D. Wang, Y. n. Li, C. Zhang, C. Du, Q. Li, Y. Lu, J. Yao, J. Qi, W. Wu, and W. Cai, Cathodoluminescence Enhancement of MoS2 by Femtosecond Laser Induced Periodic Surface Structures, Journal of Nanoscience and Nanotechnology 18, 7557-7560 (2018).

50.Y. Lu, Q. Wu, Q. Zhang, R. Wang, W. Zhao, D. Zhang, C. Pan, J. Qi, and J. Xu, Propagation of THz pulses in rectangular subwavelength dielectric waveguides, Journal of Applied Physics 123, 223103 (2018).

49.Q. Li, Q. Wu, Y. Li, C. Zhang, Z. Jia, J. Yao, J. Sun, and J. Xu, Femtosecond laser-induced periodic surface structures on lithium niobate crystal benefiting from sample heating, Photonics Research 6, 789-793 (2018).

48.Q. Zhang, J. Qi, Q. Wu, Y. Lu, W. Zhao, R. Wang, C. Pan, S. Wang, and J. Xu, Surface enhancement of THz wave by coupling a subwavelength LiNbO 3 slab waveguide with a composite antenna structure, Scientific reports 7, 1-7 (2017).

47.H. Yu, C. Li, Q. Wu, F. Bo, Z. Liu, and B. Yan, The bridging role of physics tournament in the transition from high school to college, Physics and Engineering 27, 104 (2017).

46.H. Yang, J. Qi, C. Pan, Y. Lu, Q. Wu, J. Yao, and J. Xu, Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in Lithium Niobate subwavelength waveguide, Optics express 25, 14766-14773 (2017).

45.C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. Hill, and J. Xu, Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with Bragg mirrors, Optics express 25, 9768-9777 (2017).

44.Z. Jia, S. Huang, X. Jin, M. Yang, Z. Chen, J. Yao, Q. Wu, and J. Xu, Research and development of femtosecond-laser hyperdoped silicon, Opto-Electronic Engineering 44, 1146-1159 (2017).

43.Z. Ji, X. Zhang, Y. Zhang, Z. Wang, I. Drevensek-Olenik, R. Rupp, W. Li, Q. Wu, and J. Xu, Electrically tunable generation of vectorial vortex beams with micro-patterned liquid crystal structures, Chinese Optics Letters 15, 070501 (2017).

42.H. Yu, K. Ren, Q. Wu, J. Wang, J. Lin, Z. Wang, J. Xu, R. F. Oulton, S. Qu, and P. Jin, Organic–inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability, Nanoscale 8, 19536-19540 (2016).

41.J. Qi, Y. Xiang, W. Yan, M. Li, L. Yang, Z. Chen, W. Cai, J. Chen, Y. Li, and Q. Wu, Excitation of the tunable longitudinal higher-order multipole SPR modes by strong coupling in large-area metal sub-10 nm-gap array structures and its application, The Journal of Physical Chemistry C 120, 24932-24940 (2016).

40.Y. Pan, M. Yang, Y. Li, Z. Wang, C. Zhang, Y. Zhao, J. Yao, Q. Wu, and J. Xu, Threshold dependence of deep-and near-subwavelength ripples formation on natural MoS 2 induced by femtosecond laser, Scientific reports 6, 19571 (2016).

39.Z. Ji, X. Zhang, B. Shi, W. Li, W. Luo, I. Drevensek-Olenik, Q. Wu, and J. Xu, Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings, Optics letters 41, 336-339 (2016).

38.B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, THz band-stop filter using metamaterials surfaced on LiNbO 3 sub-wavelength slab waveguide, Optics express 23, 16042-16051 (2015).

37.Y. Yu, P. Zhang, L. Guo, Z. Chen, Q. Wu, Y. Ding, W. Zheng, and Y. Cao, The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity, The Journal of Physical Chemistry C 118, 12727-12733 (2014).

36.Y. Yu, Y. Tang, J. Yuan, Q. Wu, W. Zheng, and Y. Cao, Fabrication of N-TiO2/InBO3 heterostructures with enhanced visible photocatalytic performance, The Journal of Physical Chemistry C 118, 13545-13551 (2014).

35.M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. Drevensek-Olenik, and J. Xu, Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse, Optics Letters 39, 343-346 (2014).

34.Y.-E. Wu, Z. Wang, X. Zhang, W. Li, L. Huang, F. Gao, W. Li, Q. Wu, and J. Xu, Polarization independent broadband femtosecond optical gating using transient Kerr lens effect, Optics express 22, 6691-6698 (2014).

33.Y.-E. Wu, M. Ren, Z. Wang, W. Li, Q. Wu, S. Yi, X. Zhang, and J. Xu, Optical nonlinear dynamics in ZnS from femtosecond laser pulses, AIP Advances 4, 057107 (2014).

32.J. Qi, Z. Chen, J. Chen, Y. Li, W. Qiang, J. Xu, and Q. Sun, Independently tunable double Fano resonances in asymmetric MIM waveguide structure, Optics express 22, 14688-14695 (2014).

31.W. Li, Z. Wang, X. Zhang, Y.-E. Wu, W. Liao, L. Huang, F. Gao, W. Fan, W. Li, and Q. Wu, Convenient ultra-broadband femtosecond optical gating utilizing transient beam deflection effect, Optics express 22, 31417-31425 (2014).

30.Q. Chen, Y. Zuo, W. Cai, B. Zhang, L. Pan, J. Yao, Q. Wu, and J. Xu, Giant field enhancement and resonant wavelength shift through a composite nanostructure, Optics Communications 321, 47-50 (2014).

29.M. Yang, Q. Wu, J. Qi, I. Drevensek‐Olenik, Z. Chen, Y. Pan, and J. Xu, Microstructured polymer‐based substrates with broadband absorption for surface‐enhanced Raman scattering, Journal of Raman Spectroscopy 44, 1678-1681 (2013).

28.Q. Wu, Q.-Q. Chen, B. Zhang, and J.-J. Xu, Terahertz phonon polariton imaging, Frontiers of Physics 8, 217-227 (2013).

27.M. Ren, C. Pan, Q. Li, W. Cai, X. Zhang, Q. Wu, S. Fan, and J. Xu, Isotropic spiral plasmonic metamaterial for sensing large refractive index change, Optics letters 38, 3133-3136 (2013).

26.Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, W. Wudeng, L. Wenqiang, Y. Xuanyi, X. Jingjun, and S. Qian, Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing, Nanoscale research letters 8, 437 (2013).

25.Q. Jiwei, L. Yudong, Y. Ming, W. Qiang, C. Zongqiang, P. Jingyang, L. Yue, W. Wudeng, Y. Xuanyi, and S. Qian, Fabrication of nanowire network AAO and its application in SERS, Nanoscale research letters 8, 1-6 (2013).

24.Z. Chen, Q. Wu, M. Yang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Time-resolved photoluminescence of silicon microstructures fabricated by femtosecond laser in air, Optics Express 21, 21329-21336 (2013).

23.Z. Chen, Q. Wu, M. Yang, and J. Xu, Time-resolved study of femtosecond laser-induced plasma on silicon, in Laser Science(Optical Society of America2013), p. LTh1I. 5.

22.Z. Chen, Q. Wu, M. Yang, B. Tang, J. Yao, R. A. Rupp, Y. Cao, and J. Xu, Generation and evolution of plasma during femtosecond laser ablation of silicon in different ambient gases, Laser and Particle Beams 31, 539-545 (2013).

21.J. Yuan, Q. Wu, P. Zhang, J. Yao, T. He, and Y. Cao, Synthesis of indium borate and its application in photodegradation of 4-chlorophenol, Environmental science & technology 46, 2330-2336 (2012).

20.Q. Wu, S. Guo, Y. Ma, F. Gao, C. Yang, M. Yang, X. Yu, X. Zhang, R. A. Rupp, and J. Xu, Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy, Optics express 20, 960-965 (2012).

19.S. Fan, L. Wei, W. Pi-Dong, L. Jun, W. Qiang, W. Zhen-Hua, and Z. Xin-Zheng, Optically Controlled Coherent Backscattering from a Water Suspension of Positive Uniaxial Microcrystals, Chinese Physics Letters 29, 014206 (2012).

18.杨程亮, 吴强, 禹宣伊, 张心正, 孔勇发, and 许京军, 太赫兹声子极化激元在 LiNbO3 微结构中的衍射和干涉动态过程的时间分辨成像, 人工晶体学报40, 309-313 (2011).

17.W. Zhang, F. Gao, F. Bo, Q. Wu, G. Zhang, and J. Xu, All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer, Optics letters 36, 271-273 (2011).

16.C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide, Optics express 18, 26351-26364 (2010).

15.C. A. Werley, Q. Wu, K.-H. Lin, C. R. Tait, A. Dorn, and K. A. Nelson, Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO 3, JOSA B 27, 2350-2359 (2010).

14.Z. Wang, Q. Wu, C. Yang, X. Zhang, Z. Chen, R. A. Rupp, and J. Xu, Nonlinear spectrum broadening of femtosecond laser pulses in photorefractive waveguide arrays, Optics express 18, 10112-10119 (2010).

13.W. Li, X. Zhang, Z. Wang, Q. Wu, L. Liu, J. Xu, and B. Tang, Observation of modulated spontaneous emission of Rhodamine 6G in low refractive index contrast 1D-periodic gelatin film, Science China Physics, Mechanics and Astronomy 53, 54-58 (2010).

12.W. Li, B. Tang, X. Zhang, F. Gao, L. Liu, Q. Wu, L. Pan, C. Lou, S. Guo, and R. A. Rupp, Investigation on the phase shifts of extinction and phase gratings in polymethyl methacrylate, Chinese Optics Letters 8, 18-21 (2010).

11.Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide, Optics express 17, 9219-9225 (2009).

10.Z. Xin-Zheng, W. Zhen-Hua, L. Hui, W. Qiang, T. Bai-Quan, G. Feng, and X. Jing-Jun, Characterization of photon statistical properties with normalized Mandel parameter, Chinese Physics Letters 25, 3976 (2008).

9.L. Wei, Z. Xin-Zheng, S. Yan-Li, X. Jing-Jun, Q. Hai-Jun, W. Qiang, R. A. Rupp, L. Ci-Bo, W. Zhen-Hua, and G. Feng, Photopolymerization-induced two-beam coupling and light-induced scattering in polymethyl methacrylate, Chinese Physics Letters 25, 2857 (2008).

8.B. Fei, Z. Xin-Zheng, W. Zhen-Hua, W. Qiang, H. Hao, and X. Jing-Jun, Preparation and size characterization of silver nanoparticles produced by femtosecond laser ablation in water, Chinese Physics Letters 25, 4463 (2008).

7.W. Qiang, X. Jing-Jun, R. Rupp, Z. Xin-Zheng, L. Ci-Bo, and S. Bugaychuk, Transition from backscattering speckles to phase conjugation in LiNbO3: Fe, Chinese Physics Letters 23, 2101 (2006).

6.F. Gao, J. Xu, H. Qiao, Q. Wu, Y. Xu, and G. Zhang, Observation of superluminal and slowdown light propagation in doped lithium niobate crystals, Optics communications 257, 185-190 (2006).

5.W. Zhen-Hua, Z. Xin-Zheng, X. Jing-Jun, W. Qiang, Q. Hai-Jun, T. Bai-Quan, R. Romano, K. Yong-Fa, C. Shao-Lin, and H. Zi-Heng, Time-resolved femtosecond degenerate four-wave mixing in LiNbO3: Fe, Mg crystal, Chinese Physics Letters 22, 2831 (2005).

4.H. Qiao, Y. Tomita, J. Xu, Q. Wu, G. Zhang, and G. Zhang, Observation of strong stimulated photorefractive scattering and self-pumped phase conjugation in LiNbO 3: Mg in the ultraviolet, Optics express 13, 7666-7671 (2005).

3.Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. R. Volk, Fanning scattering in LiNbO3 at 750–850 nm induced by femtosecond laser pulses, Optical Materials 23, 277-280 (2003).

2.H. Qiao, J. Xu, Q. Wu, X. Yu, Q. Sun, X. Zhang, G. Zhang, and T. R. Volk, An increase of photorefractive sensitivity in In: LiNbO3 crystal, Optical Materials 23, 269-272 (2003).

1.Q. Wu, J. Xu, Q. Sun, X. Zhang, H. Qiao, B. Tang, G. Zhang, and M. Gu, Light-induced backward scattering in LiNbO 3: Fe, Zn, Applied physics letters 81, 4691-4693 (2002).


毕业生展示

2005年 博士毕业

在MIT的Keith A. Nelson 教授组


  • 2008年 楠姐毕业

2010年 娜姐毕业

喆哥(2010年毕业)、亮哥(2011年毕业)的年代

2011年 亮子、阿郭毕业

2013年 小马毕业

2014年 东哥、明哥、庆全毕业

2015年 小仙、小丽、瑜梅、斌哥、世彪毕业

2016年 小娜、大仙、舰波毕业

2017年 小丹、六儿、小强毕业

2018年 大梅子、艳娥、强哥毕业

2019年 南姐、娟姐、玉琪、丹阳、琦叔、灯爷毕业

2020年 小熙、俞萱、金泽、阿德毕业

2021 年 荣姐姐、瑶神、松哥 毕业

招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

南开大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部