导师风采
刘雨
浏览量:180   转发量:1

个人信息

Personal Information

  • 教授
  • 导师类别:博士生导师
  • 性别: 男
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:环境科学与工程学院
  • 所属专业: 环境工程
  • 邮箱 : cyliu@nankai.edu.cn
  • 工作电话 : -

个人简介

Personal Profile

https://env.nankai.edu.cn/2023/1222/c14180a532674/page.htm

刘雨,2023年国家高层次人才计划引进加入南开大学,现任南开大学讲席教授。于法国国立应用科学学院获博士学位;香港科技大学博士后、新加坡南洋理工大学李光耀博士后研究员。加入南开大学前,历任新加坡南洋理工大学土木与环境工程学院环境工程系教授(2001-2023)、新加坡南洋理工大学土木与环境工程学院科研副院长(2011-2014)、新加坡南洋理工大学先进环境生物技术中心主任(2014-2018)、新加坡南洋理工大学环境工程项目主任(2019-2022)、新加坡南洋理工大学“污水再生回用及生物固体废物资源化”项目主任(2021-2023)等。主持了多项新加坡政府机构和企业资助的基础研究和示范工程项目,多项技术转移授权给工业界。由Elsevier,Wiley,CRC Press,IWA Publishing等出版社出版英文论著8部。2019年在斯坦福大学和Elsevier依据Scopus数据库对全球近700万名学者的论文综合评价公开发布的“引用最多的前10万名科学家”的榜单中位列全球“环境工程”学科第25位。2023年全球前2%科学家中,位列终身榜单第6381位,年度榜单第3607位,子领域 “环境工程”第19位,“生物技术”第13位。获新加坡国家科技奖(新加坡最高科研奖),新加坡国家发展部研发奖,并于2014年由新加坡总统授予新加坡公共行政铜质勋章等奖励。

团队以“低碳非常规水源资源化与水质保障技术平台”为基础,围绕环境生物工程、环境微生物,环境化学和环境功能材料技术,以水污染治理和再生回用为研究对象,致力研发低碳非常规水源资源化与水质保障技术。团队致力培养科研与工程技术人才,热忱欢迎具有环境、生物、材料、化工、计算机等研究背景的学生及博士后加入!

2023-至今

  • 南开大学,环境科学与工程学院,讲席教授,博导

2013-2023

新加坡南洋理工大学,土木与环境工程学院,教授,博导

2005-2013

新加坡南洋理工大学,土木与环境工程学院,副教授,博导

2001-2005

新加坡南洋理工大学,土木与环境工程学院,助理教授,博导

1998-2001

新加坡南洋理工大学,土木与环境工程学院,李光耀博士后研究员

科研兴趣

基于废水及有机质固体废物处理的生物技术,包括好氧颗粒污泥,菌藻颗粒,主流厌氧氨氧化,新型能量自给自足生物处理组合工艺(新A-B工艺),餐厨垃圾资源化及能源化,好氧及厌氧膜生物反应器,膜生物反应器在线化学清洗过程中产生的卤代有机物,厌氧消化,剩余污泥减量化,生物法去除水体中氮磷等研究。在此基础上发展的相关技术大多已完成中试示范。


  • 研究方向Research Directions
水污染控制与资源化
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
团队展示

团队以“低碳非常规水源资源化与水质保障技术平台”为基础,围绕环境生物工程、环境微生物,环境化学和环境功能材料技术,以水污染治理和再生回用为研究对象,致力研发低碳非常规水源资源化与水质保障技术。团队致力培养科研与工程技术人才,热忱欢迎具有环境、生物、材料、化工、计算机等研究背景的学生及博士后加入!


科研项目

在研主持与参与科研项目:

1.     2025.01-2030.12 国家自然科学基金-区域联合重点项目(海南)U24A20188

2.     2024.01-2027.12 中国教育部国家高层次人才

3.     2023- 南开大学低碳非常规水源与水质保障平台

近5年新加坡主持项目

Ø  PUB-CRP 新加坡国家水务局: 污水处理与资源化实现高效能源回收与污泥减量化示范 Demonstration of integrated usedwater reclamation processes towards enhanced energy recovery and minimizedsludge production. S$ 3,122,600.00, 2019.1-2022.7,项目负责人

Ø  Urban Solutions and Sustainability(USS) Integration Fund (IF) 新加坡国家能源局: 餐厨垃圾零固体排放中试项目 Pilot demonstration of ultrafast conversion of food waste to biofertilizer with zerosolid discharge. S$ 969,640.00, 2018.12 -2021.12,项目负责人

Ø  中国-新加坡国际联合研究院, 将餐厨废弃物转化为生物甲烷技术示范. RMB 1 Million, 2017.7 -2021.3,项目负责人

Ø  Singapore Ministry of Education 新加坡教育部: A novel environmentally friendlyintegrated pre-concentration and solidification technology for radioactivewastewater treatment. S$ 99500.00, 2019.11-2021.4,项目负责人


研究成果

SCI论文

谷歌学术:https://scholar.google.com/citations?user=-xaymxAAAAAJ&hl=zh-CN

SCI引用率38000余次,h指数101(截至2025.2)

近5年发表论文:

[1] Tong C., Hu G.S., Ji B., Li A.J.,Zhang X.Y., Liu Y. (2025). Lightintensity-regulated glycogen synthesis and pollutant removal inmicroalgal-bacterial granular sludge for wastewater treatment. Water Research,271:122988.

[2] Chen X.Y., Zhang X.Y*., Lu J.F.,Jiang Y.S., Liu Y*. (2025). Photoelectricmaterials-assisted anammox systems: Performance, microbial community dynamics,metabolic responses and N-removal pathways. Chemical Engineering Journal,505:159613.

[3] An L., Zhang X.Y*., Lu J.F., WanJ.F., Liu Y*. (2025). Valorization of food waste to biofertilizer andcarbon source for denitrification with assistance of plant ash and biochartoward zero solid discharge. Bioresource Technology, 420:132119.

[4] Zhang X.Y., Jiang Y.S., ZhangC.J., Zhang M., Liu Y*. (2024). Capture of wastewater ammonium bymicroalgal-bacterial granular sludge: A green-to-green engineering solution forcarbon neutrality. Chemical Engineering Journal, 482:148939.

[5] Zhao Y.L., Liao Y., Li C., YinY.R., Wang R., Liu Y*. (2024). Constructing nanofiltration membrane onhydrophobic PVDF and PTFE substrates via reverse interfacial polymerization.Separation and Purification Technology, 334:125944.

[6] Zhao Y., Liao Y., Li C., Yin Y.,Wang R., Liu Y*. (2024). Constructing nanofiltration membrane onhydrophobic PVDF and PTFE substrates via reverse interfacial polymerization.Separation and Purification Technology, 334, 125944.

[7] Zhang X.Y., Jiang Y.S., ZhangC.J., Zhang M., Liu Y*. (2024). Capture of wastewater ammonium bymicroalgal-bacterial granular sludge: A green-to-green engineering solution forcarbon neutrality. Chemical Engineering Journal, 482, 148939.

[8] Yu Y., Wang J.H., Liu Y.,Yu P.F., Wang D.S., Zheng P., Zhang M. (2024). Revisit the environmental impactof artificial intelligence: the overlooked carbon emission source? Frontiers ofEnvironmental Science & Engineering, 18(12):1-5.

[9] Wu J.L., Liu Z.H., Ma Q.G., WanY.P., Dang Z., Liu Y., Liu Y. (2024). Combined collection systems ofsewage and rainfall runoff seriously affect the spatial distributions ofnatural estrogens and their conjugates in river water: Insights from the PearlRiver of China. Water Research, 256:121588.

[10] Sun P.H., Ji B., Li A.J., ZhangX.Y., Liu Y. (2024). Efficient nitrogen removal by microalgal-bacterialgranular sludge-marimo coupling process. Bioresource Technology, 402:130816.

[11] Shi Y.T., Ji B., Li A.J., ZhangX.Y., Liu Y. (2024). Enhancing the performance of microalgal-bacterialsystems with sodium bicarbonate: A step forward to carbon neutrality ofmunicipal wastewater treatment. Water Research, 266:122345.

[12] Shi Y.T., Xu C.X., Ji B., LiA.J., Zhang X.Y., Liu Y. (2024). Microalgal-bacterial granular sludgecan remove complex organics from municipal wastewater with algae-bacteriainteractions. Communications Earth & Environment, 5(1):347.

[13] Niu B.H., Zhang M., Meng S.J.,Mao Z.Y., Liang D.W., Fan W.H., Yang L.Y., Dong Z.K., Liao Y., Wang J.Y., LiuY. (2024). Integration of membrane bioreactor with a weak electric field:Mitigating membrane fouling and improving effluent quality targeting low energyconsumption[J]. Chemical Engineering Journal, 495:153336.

[14] Jiang Y.S., Zhang X., An L., LiuY*. (2024). A novel biochar-augmented enzymatic process for conversion offood waste to biofertilizers: Planting trial with leafy vegetable. BioresourceTechnology, 399, 130554.

[15] Zhao Q., Ying H., Liu Y*.,Wang H.B., Xu J.T., Wang W., Ren J., Meng S.J., Wang N., Mu R.M., Wang S.S., LiJ.J. (2023). Towards low energy-carbon footprint: Current versus potential Precovery paths in domestic wastewater treatment plants. Journal ofEnvironmental Management, 344:118653.

[16] Zhang X.Y., Jiang Y.S., Liu Y.(2023). Circular Economy-Driven Food Waste Valorization for Zero SolidDischarge: From Laboratory to Field Trial. Urban Solutions & Sustainability(USS) R&D Congress, Singapore.

[17] Zhang X.Y., Ji B., Tian J.L., LiuY*. (2023). Development, performance and microbial community analysis of acontinuous-flow microalgal-bacterial biofilm photoreactor for municipalwastewater treatment. Journal of Environmental Management, 338, 117770.

[18] Zhang X.Y*., Tian J.L.,Jiang Y.S., Geng Y.K., Liu Y*. (2023). Direct ammonium recovery from thepermeate of a pilot-scale anaerobic MBR by biochar to advance low-carbonmunicipal wastewater reclamation and urban agriculture. Science of The TotalEnvironment, 877:162872.

[19] Zhang X.Y., An L., Tian J.L., JiB., Lu J.F., Liu Y*. (2023). Microalgal captureof carbon dioxide: A carbon sink or source? Bioresource Technology, 390,129824.

[20] Wei G.R., Wei T., Li Z.M., WeiC., Kong Q.P., Guan X.H., Qiu G.L., Hu Y., Wei C.H., Zhu S., Liu Y.,Preis S. (2023). BOD/COD ratio as a probing index in the O/H/O process forcoking wastewater treatment. Chemical Engineering Journal, 466:143257.

[21] Shi Y.T., Ji B., Zhang X.Y., LiuY*. (2023). Auto-floating oxygenic microalgal-bacterial granular sludge.Science of the Total Environment, 856, 159175.

[22] Liu Y., Xiong Y.H., ZhouY., Ng W.J. (2023) A Method For Rapid Start-Up Of Microbial Granulation InWastewater Biotreatment Process. Malaysia Patent.

[23]刘雨,马英群. (2023). 一种利用自制复合水解酶处理厨余垃圾的方法, 202110170591.7

[24] Liu Y. (2023). BNR: APotential Hurdle for Carbon-Neutral Municipal Wastewater Reclamation. IWAResource Recovery Conference, Shenzhen, China.

[25] Li S.X., Geng Y.K., Teng B., XuS.Q., Petkov P.S., Liao Z.Q., Jost B., Liu Y., Feng X.L., Wu B.Z., ZhangT. (2023). Nature-Inspired Pyrylium Cation-Based Vinylene-LinkedTwo-Dimensional Covalent Organic Framework for Efficient Sunlight-Driven WaterPurification. Chemistry of Materials, 35(4):1594-1600.

[26] Kong D.M., Tang Z., Liu Z.H.,Dang Z., Guo P.R., Song Y.M., Liu Y. (2023). Simultaneous determinationof twelve natural estrogens in dairy milk using liquid–liquid extraction andsolid-phase extraction coupled with gas chromatography-mass spectrometry.Environmental Science and Pollution Research, 30(52):112908-112921.

[27] Geng Y.K., Gu J., Zhang X.Y.,Lim Z.K., Jiang Y.S., Zhang M., Zhou Y., Liu Y*. (2023). Multi-parametercontrol-based operation strategy for mainstream deammonification in anintegrated anaerobic biofilm reactor-step feed MBR. Chemosphere, 333, 138941.

[28] Zhang X.Y., Liu Y*. (2022). Circular economy is game-changing municipalwastewater treatment technology towards energy and carbon neutrality. ChemicalEngineering Journal, 429, 132114.

[29] Zhang X.Y., Liu Y*.(2022). Resource recovery from municipal wastewater: A critical paradigm shiftin the post era of activated sludge. Bioresource Technology, 363, 127932.

[30] Zhang X.Y., Lei Z.F., Liu Y*.(2022). Microalgal-bacterial granular sludge for municipal wastewatertreatment: From concept to practice. Bioresource Technology, 354, 127201.

[31] Zhang X.Y., Gu J., Meng S.J., LiuY*. (2022). Dissolved methane in anaerobic effluent: Emission or recovery?Frontiers of Environmental Science & Engineering, 16(4), 54.

[32] Zhang X.Y., Gu J., Liu Y*.(2022). Necessity of direct energy and ammonium recovery for carbon neutralmunicipal wastewater reclamation in an innovative anaerobic MBR-biocharadsorption-reverse osmosis process. Water Research, 211, 118058.

[33] Zhang M., Ji B., Wang S.L., GuJ., Liu Y*. (2022). Granule size informs the characteristics andperformance of microalgal-bacterial granular sludge for wastewater treatment.Bioresource Technology, 346, 126649.

[34] Zhang M., Gu J., Wang S.Y., LiuY*. (2022). A mainstream anammox fixed-film membrane bioreactor with novelsandwich-structured carriers for fast start-up, effective sludge retention andmembrane fouling mitigation. Bioresource Technology, 347, 126370.

[35] Zhang J., Zhong S.S., Zhao K.M.,Liu Z.H., Dang Z., Liu Y*. (2022). Sulfite may disrupt estrogenhomeostasis in human via inhibition of steroid arylsulfatase. EnvironmentalScience and Pollution Research, 29(13), 19913-19917.

[36] Zhang J., Wan Y.P., Liu Z.H.,Wang H., Dang Z., Liu Y*. (2022). Stability properties of naturalestrogen conjugates in different aqueous samples at room temperature and tipsfor sample storage. Environmental Science and Pollution Research, 29(17),24589-24598.

[37] Wang S.Y., Liu H., Gu J., ZhangM., Liu Y*. (2022). Towards carbon neutrality and water sustainability:An integrated anaerobic fixed-film MBR-reverse osmosis-chlorination process formunicipal wastewater reclamation. Chemosphere, 287, 132060.

[38] Wang Q., Shen Q.Y., Wang J.X.,Zhao J.M., Zhang Z.Y., Lei Z.F., Yuan T., Shimizu K., Liu Y., Lee D.J.(2022). Insight into the rapid biogranulation for suspended single-cellmicroalgae harvesting in wastewater treatment systems: Focus on the role ofextracellular polymeric substances. Chemical Engineering Journal, 430.

[39] Wang Q., Li H., Shen Q.Y., WangJ.X., Chen X.Y., Zhang Z.Y., Lei Z.F., Yuan T., Shimizu K., Liu Y., LeeD.J. (2022). Biogranulation process facilitates cost-efficient resourcesrecovery from microalgae-based wastewater treatment systems and the creation ofa circular bioeconomy. Science of the Total Environment 828.

[40] Tang Z., Wan Y.P., Liu Z.H.,Wang H., Dang Z., Liu Y*. (2022). Twelve natural estrogens in urines ofswine and cattle: Concentration profiles and importance of eight less-studied.Science of the Total Environment, 803, 150042.

[41] Tang Z., Liu Z.H., Chen W., WangC., Wu Y.J., Wang H., Dang Z., Liu Y*. (2022). Twelve natural estrogensin urines of six threatened or endangered mammalian species in Zoo Park:implications and their potential risk. Environmental Science and PollutionResearch, 29(32), 49404-49410.

[42] Li X., Wang G.L., Chen J.B.,Zhou X., Liu Y. (2022). Deciphering the concurrence of comammox, partialdenitrification and anammox in a single low-oxygen mainstream nitrogen removalreactor. Chemosphere, 305:135409.

[43] Jiang M.Y., Wang P., Liu H.L.,Dai X.H., Song S.Q., Liu Y. (2022). The Effect of Operating Strategieson the Anaerobic Digestion of Gentamicin Mycelial Residues: Insights into theEnhancement of Methane Production and Attenuation of Gentamicin Resistance.Environmental Science & Technology, 56(21):15130-15140.

[44] Ji B., Fan S.Q., Liu Y*.(2022). A continuous-flow non-aerated microalgal-bacterial granular sludgeprocess for aquaculture wastewater treatment under natural day-nightconditions. Bioresource Technology, 350.

[45] Gu J., Zhang M., Chaudhari B.,Kicsi G., Barber J., Hong Y., Gu Y., Liu Y. (2022). Improving waterreclamation efficiency with a novel A-B process. Innovation in Water Singapore.

[46] Gu J., Liu Y. (2022). Integrateddeammonification process for wastewater reclamation. United States Patent.

[47] Gao Z., Ma Y.Q., Liu Y*.,Wang Q.H. (2022). Waste cooking oil used as carbon source for microbial lipidproduction: Promoter or inhibitor. Environmental Research, 203.

[48] Cui B.H., Chen Z.H., Guo D.B., LiuY*. (2022). Investigations on the pyrolysis of microalgal-bacterialgranular sludge: Products, kinetics, and potential mechanisms. BioresourceTechnology, 349:126328.

[49] Cui B.H., Chen Z.H., Wang F.H.,Zhang Z.H., Dai Y.R., Guo D.B., Liang W., Liu Y. (2022). FacileSynthesis of Magnetic Biochar Derived from Burley Tobacco Stems towardsEnhanced Cr(VI) Removal: Performance and Mechanism. Nanomaterials, 12(4).

[50] Chen Y.J., Ma R., Pu X.C., FuX.Y., Ju X.Y., Arif M., Yan X.Q., Qian J., Liu Y. (2022). Thecharacterization of a novel magnetic biochar derived from sulfate-reducingsludge and its application for aqueous Cr(Ⅵ)removal through synergistic effects of adsorption and chemical reduction.Chemosphere, 308:136258.

[51] Zhong S.S., Zhang J., Liu Z.H.,Dang Z., Liu Y*. (2021). Inhibition Properties of Arylsulfatase andβ-Glucuronidase by Hydrogen Peroxide, Hypochlorite, and Peracetic Acid. ACSOmega, 6(12), 8163-8170.

[52] Zhao Q., Tian J.Z., Zhang K.F.,Wang H.B., Li M., Meng S.J., Mu R.M., Liu L., Yin M.M., Li J.J., Liu Y*.(2021). Phosphate recovery from the P-enriched brine of AnMBR-RO-IE treatingmunicipal wastewater via an innovated phosphorus recovery batch reactor withnano-sorbents. Chemosphere, 284.

[53] Zhang X.Y., Liu Y*.(2021). Integrated forward osmosis-adsorption process for strontium-containingwater treatment: Pre-concentration and solidification. Journal of HazardousMaterials, 414.

[54] Zhang X.Y., Liu Y*.(2021). Circular economy-driven ammonium recovery from municipal wastewater:State of the art, challenges and solutions forward. Bioresource Technology,334.

[55] Zhang X.Y., Liu Y*.(2021). Reverse osmosis concentrate: An essential link for closing loop ofmunicipal wastewater reclamation towards urban sustainability. ChemicalEngineering Journal, 421.

[56] Zhang X.Y., Liu Y*.(2021). Concurrent removal of Cu(II), Co(II) and Ni(II) from wastewater bynanostructured layered sodium vanadosilicate: Competitive adsorption kineticsand mechanisms. Journal of Environmental Chemical Engineering, 9(5).

[57] Zhang M., Ji B., Liu Y*.(2021). Microalgal-bacterial granular sludge process: A game changer of futuremunicipal wastewater treatment? Science of the Total Environment 752.

[58] Wang S.L., Ji B., Zhang M., GuJ., Ma Y.Q., Liu Y*. (2021). Tetracycline-induced decoupling ofsymbiosis in microalgal-bacterial granular sludge. Environmental Research, 197.

[59] Wang S.L.*, Ji B.*,Cui B.H.*, Ma Y.Q.*, Guo D.B.*, Liu Y*.(2021). Cadmium-effect on performance and symbiotic relationship ofmicroalgal-bacterial granules. Journal of Cleaner Production, 282:125383.

[60] Wang H., Liu Z.H., Tang Z.,Zhang J., Dang Z., Liu Y*. (2021). Possible overestimation of bisphenolanalogues in municipal wastewater analyzed with GC-MS. Environmental Pollution,273.

[61] Wan Y.P., Liu Z.H., Liu Y*.(2021). Veterinary antibiotics in swine and cattle wastewaters of China and theUnited States: Features and differences. Water Environment Research, 93(9),1516-1529.

[62] Tang Z., Liu Z.-h., Wan Y.-p.,Wang H., Dang Z., Liu Y*. (2021). Far-Less Studied Natural Estrogens asIgnored Emerging Contaminants in Surface Water: Insights from Their Occurrencein the Pearl River, South China. ACS ES&T Water, 1(8), 1776-1784.

[63] Tang Z., Liu Z.H., Wang H., DangZ., Liu Y*. (2021). Occurrence and removal of 17α-ethynylestradiol (EE2)in municipal wastewater treatment plants: Current status and challenges.Chemosphere, 271.

[64] Tang Z., Liu Z.H., Wang H., DangZ., Liu Y*. (2021). A review of 17α-ethynylestradiol (EE2) in surfacewater across 32 countries: Sources, concentrations, and potential estrogeniceffects. Journal of Environmental Management, 292.

[65] Sun H.F., Liu H., Zhang M., LiuY*. (2021). A novel single-stage ceramic membrane moving bed biofilmreactor coupled with reverse osmosis for reclamation of municipal wastewater toNEWater-like product water. Chemosphere, 268.

[66] Sun H., Liu Y*. (2021).Chemical Cleaning-Triggered Release of Dissolved Organic Matter from a SludgeSuspension in a Ceramic Membrane Bioreactor: A Potential Membrane Foulant. ACSES&T Water, 1(12), 2497-2503.

[67] Meng X.H., Meng S.J., Liu Y*.(2021). The Limitations in Current Studies of Organic Fouling and FutureProspects. Membranes, 11(12).

[68] Meng X., Wang X., Meng S., WangY., Liu H., Liang D., Fan W., Min H., Huang W., Chen A., Zhu H., Peng G., LiuJ., Qiu Z., Wang T., Yang L., Wei Y., Huo P., Zhang D., Liu Y. (2021). AGlobal Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, andPrevention. ACS ES&T Water, 1(10), 2174-2185.

[69] Meng S.J., Wang R., Zhang K.J.,Meng X.H., Xue W.C., Liu H.J., Liang D.W., Zhao Q., Liu Y. (2021).Transparent exopolymer particles (TEPs)-associated protobiofilm: A neglectedcontributor to biofouling during membrane filtration. Frontiers ofEnvironmental Science & Engineering, 15(4).

[70] Liu Z.H., Dang Z., Yin H., LiuY*. (2021). Making waves: Improving removal performance of conventionalwastewater treatment plants on endocrine disrupting compounds (EDCs): theirconjugates matter. Water Research, 188.

[70] Liu Z.H., Dang Z., Liu Y*.(2021). Legislation against endocrine-disrupting compounds in drinking water:essential but not enough to ensure water safety. Environmental Science andPollution Research, 28(15), 19505-19510.

[72] Ji B., Zhu L., Wang S.L., LiuY*. (2021). Temperature-effect on the performance of non-aeratedmicroalgal-bacterial granular sludge process in municipal wastewater treatment.Journal of Environmental Management, 282.

[73] Ji B., Wang S.L., Silva M.R.U.,Zhang M., Liu Y*. (2021). Microalgal-bacterial granular sludge formunicipal wastewater treatment under simulated natural diel cycles:Performances-metabolic pathways-microbial community nexus. Algal Research, 54.

[74] Ji B., Liu Y*. (2021).Assessment of Microalgal-Bacterial Granular Sludge Process for EnvironmentallySustainable Municipal Wastewater Treatment. ACS ES&T Water, 1(12),2459-2469.

[75] Hu M., Guo D.B., Ma Y.Q., LiuY. (2021). Thermal-Chemical Treatment of Sewage Sludge Toward EnhancedEnergy and Resource Recovery. Sustainable Resource Management, Volume I. 2021:247-273

[76] Zhou X., Wang G.L., Yin Z.Y.,Chen J.B., Song J.J., Liu Y*. (2020). Performance and microbialcommunity in a single-stage simultaneous carbon oxidation, partial nitritation,denitritation and anammox system treating synthetic coking wastewater under thestress of phenol. Chemosphere, 243.

[77] Zhao Q., Liu C.F., Song H.Q.,Liu Y., Wang H.B., Tian F.Y., Meng S.J., Zhang K.F., Wang N., Mu R.M., LiM. (2020). Mechanism of phosphate adsorption on superparamagneticmicroparticles modified with transitional elements: Experimental observationand computational modelling. Chemosphere, 258.

[78] Zhang X.Y., Liu Y*.(2020). Potential toxicity and implication of halogenated byproducts generatedin MBR online-cleaning with hypochlorite. Journal of Chemical Technology andBiotechnology 95(1), 20-26.

[79] Zhang X.Y., Liu Y*.(2020). Nanomaterials for radioactive wastewater decontamination. EnvironmentalScience: Nano, 7(4), 1008-1040.

[80] Zhang X.Y., Liu Y*.(2020). Ultrafast removal of radioactive strontium ions from contaminated waterby nanostructured layered sodium vanadosilicate with high adsorption capacityand selectivity. Journal of Hazardous Materials, 398.

[81] Zhang X.Y., Zhang M., Liu Y*.(2020). One step further to closed water loop: Reclamation of municipalwastewater to high-grade product water. Chinese Science Bulletin-Chinese,65(14):1358-1367.

[82] Wang S.Y., Chew J.W., Liu Y*.(2020). An environmentally sustainable approach for online chemical cleaning ofMBR with activated peroxymonosulfate. Journal of Membrane Science, 600.

[83] Wang S.Y., Chew J.W., Liu Y*.(2020). Development of an integrated aerobic granular sludge MBR and reverseosmosis process for municipal wastewater reclamation. Science of the TotalEnvironment 748.

[84] Wang S.L., Ji B., Zhang M., MaY.Q., Gu J., Liu Y*. (2020). Defensive responses of microalgal-bacterialgranules to tetracycline in municipal wastewater treatment. BioresourceTechnology, 312.

[85] Wang H., Liu Z.H., Tang Z.,Zhang J., Yin H., Dang Z., Wu P.X., Liu Y*. (2020). Bisphenol analoguesin Chinese bottled water: Quantification and potential risk analysis. Scienceof the Total Environment 713.

[86] Tang Z., Liu Z.H., Wang H., DangZ., Yin H., Zhou Y., Liu Y*. (2020). Trace determination of elevennatural estrogens and insights from their occurrence in a municipal wastewatertreatment plant and river water. Water Research, 182.

[87] Tan P.Y., Marcos, Liu Y*.(2020). Modelling bacterial chemotaxis for indirectly binding attractants. Journalof THEORETICAL BIOLOGY, 487.

[88] Ren J., Li J.F., Xu Z.Z., LiuY., Cheng F.Q. (2020). Simultaneous anti-fouling and flux-enhanced membranedistillation via incorporating graphene oxide on PTFE membrane for cokingwastewater treatment. Applied Surface Science, 531.

[89] Perera A.T.K., Pudasaini S.,Ahmed S.S.U., Phan D.T., Liu Y., Yang C. (2020). Rapid pre-concentrationof <i>Escherichia coli</i> in a microfluidic paper-based deviceusing ion concentration polarization. ELECTROPHORESIS, 41(10-11), 867-874.

[90] Perera A.T.K., Phan D.T.,Pudasaini S., Liu Y., Yang C. (2020). Enhanced sample pre-concentrationby ion concentration polarization on a paraffin coated converging microfluidicpaper based analytical platform. Biomicrofluidics, 14(1).

[91] Pang H.L., Li L., He J.G., YanZ.S., Ma Y.Q., Nan J., Liu Y*. (2020). New insight into enhancedproduction of short -chain fatty acids from waste activated sludge by cationexchange resin -induced hydrolysis. Chemical Engineering Journal, 388.

[92] Pang H.L., Pan X.L., Li L., HeJ.G., Zheng Y.S., Qu F.S., Ma Y.Q., Cui B.H., Nan J., Liu Y. (2020) Aninnovative alkaline protease-based pretreatment approach for enhancedshort-chain fatty acids production via a short-term anaerobic fermentation ofwaste activated sludge. Bioresource Technology, 312:123397.

[93] Meng S.J., Meng X.H., Fan W.H.,Liang D.W., Wang L., Zhang W.X., Liu Y*. (2020). The role of transparentexopolymer particles (TEP) in membrane fouling: A critical review. WaterResearch, 181.

[94] Ma Y.Q., Shen Y.Q., Liu Y*.(2020). Food Waste to Biofertilizer: A Potential Game Changer of GlobalCircular Agricultural Economy. Journal of Agricultural and Food Chemistry,68(18), 5021-5023.

[95] Ma Y.Q., Shen Y.Q., Liu Y*.(2020). State of the art of straw treatment technology: Challenges andsolutions forward. Bioresource Technology, 313.

[96] Luo Q., Liu Z.H., Yin H., DangZ., Wu P.X., Zhu N.W., Lin Z., Liu Y*. (2020). Global review ofphthalates in edible oil: An emerging and nonnegligible exposure source tohuman. Science of the Total Environment 704.

[97] Liu H., Gu J., Wang S.Y., ZhangM., Liu Y*. (2020). Performance, membrane fouling control and costanalysis of an integrated anaerobic fixed-film MBR and reverse osmosis processfor municipal wastewater reclamation to NEWater-like product water. Journal ofMembrane Science, 593.

[98] Li Y.F., Sim L.N., Ho J.S.,Chong T.H., Wu B., Liu Y*. (2020). Integration of an anaerobicfluidized-bed membrane bioreactor (MBR) with zeolite adsorption and reverseosmosis (RO) for municipal wastewater reclamation: Comparison with ananoxic-aerobic MBR coupled with RO. Chemosphere, 245.

[99] Ji B., Zhu L., Wang S.Y., QinH., Ma Y.Q., Liu Y*. (2020). A novel micro-ferrous dosing strategy forenhancing biological phosphorus removal from municipal wastewater. Science ofthe Total Environment 704.

[100] Ji B., Zhang M., Wang L., WangS.L., Liu Y*. (2020). Removal mechanisms of phosphorus in non-aeratedmicroalgal-bacterial granular sludge process. Bioresource Technology, 312.

[101] Ji B., Zhang M., Gu J., MaY.Q., Liu Y*. (2020). A self-sustaining synergetic microalgal-bacterialgranular sludge process towards energy-efficient and environmentallysustainable municipal wastewater treatment. Water Research, 179.

[102] Guo D.B., Hu M., Chen Z.H., CuiB.H., Zhang Q., Liu Y.H., Luo S.Y., Ruan R., Liu Y. (2020). Catalyticpyrolysis of <i>rain tree</i> biomass with nano nickel oxidesynthetized from nickel plating slag: A green path for treating waste by waste.Bioresource Technology, 315.

[103] Guo D.B., Li Y.X., Cui B.H., HuM., Luo S.Y., Ji B., Liu Y. (2020). Natural adsorption of methylene blueby waste fallen leaves of Magnoliaceae and its repeated thermal regenerationfor reuse. Journal of Cleaner Production, 267:121903.

[104] Gu J., Zhang M., Liu Y*.(2020). A review on mainstream deammonification of municipal wastewater: Noveldual step process. Bioresource Technology, 299.

[105] Gu J., Liu Y. (2020).Integrated AB processes for municipal wastewater treatment. AB Processes:Towards Energy Self-sufficient Municipal Wastewater Treatment, IWA Publishing,London, UK, 69-111.

[106] Feng H., Liang L.L., Wu W.Y.,Huang Z.H., Liu Y*. (2020). Architectingepitaxial-lattice-mismatch-free (LMF) zinc oxide/bismuth oxyiodidenano-heterostructures for efficient photocatalysis. Journal of MaterialsChemistry C, 8(32), 11263-11273.

[107] Feng H., Liang L.L., Ge J.Y.,Wu W.Y., Huang Z.H., Liu Y., Li L. (2020). Delicate manipulation ofcobalt oxide nanodot clusterization on binder-freeTiO<sub>2</sub>-nanorod photoanodes for efficientphotoelectrochemical catalysis. Journal of Alloys and Compounds, 820.

[108] Cai W.W., Han J.R., Zhang X.R.,Liu Y*. (2020). Formation mechanisms of emerging organic contaminantsduring on-line membrane cleaning with NaOCl in MBR. Journal of HazardousMaterials, 386.

[109] Zhao Q., Liu Y*. (2019).Is anaerobic digestion a reliable barrier for deactivation of pathogens inbiosludge? Science of the Total Environment 668, 893-902.

[110] Zhang X.Y., Liu Y*.(2019). Halogenated organics generated during online chemical cleaning of MBR:An emerging threat to water supply and public health. Science of the TotalEnvironment 656, 547-549.

[111] Zhang X.Y., Gu P., Liu Y*.(2019). Decontamination of radioactive wastewater: State of the art andchallenges forward. Chemosphere, 215, 543-553.

[112] Zhang X.Y., Zhang M., Liu H.,Gu J., Liu Y*. (2019). Environmental sustainability: a pressingchallenge to biological sewage treatment processes. Current Opinion inEnvironmental Science & Health, 12:1-5.

[113] Zhang M., Wang S.Y., Ji B., LiuY*. (2019). Towards mainstream deammonification of municipal wastewater:Partial nitrification-anammox versus partial denitrification-anammox. Scienceof the Total Environment 692, 393-401.

[114] Zhang M., Gu J., Liu Y*.(2019). Engineering feasibility, economic viability and environmentalsustainability of energy recovery from nitrous oxide in biological wastewatertreatment plant. Bioresource Technology, 282, 514-519.

[115] Xin X.D., Hong J.M., Liu Y*.(2019). Insights into microbial community profiles associated with electricenergy production in microbial fuel cells fed with food waste hydrolysate.Science of the Total Environment 670, 50-58.

[116] Wu L.W., Ning D.L., Zhang B.,Li Y., Zhang P., Shan X.Y., Zhang Q.T., Brown M.R., Li Z.X., Van Nostrand J.D.,Ling F.Q., Xiao N.J., Zhang Y., Vierheilig J., Wells G.F., Yang Y.F., Deng Y.,Tu Q.C., Wang A.J., Acevedo D., Agullo-Barcelo M., Alvarez P.J.J.,Alvarez-Cohen L., Andersen G.L., de Araujo J.C., Boehnke K.F., Bond P., BottC.B., Bovio P., Brewster R.K., Bux F., Cabezas A., Cabrol L., Chen S., CriddleC.S., Deng Y., Etchebehere C., Ford A., Frigon D., Sanabria J., Griffin J.S.,Gu A.Z., Habagil M., Hale L., Hardeman S.D., Harmon M., Horn H., Hu Z.Q.,Jauffur S., Johnson D.R., Keller J., Keucken A., Kumari S., Leal C.D., LebrunL.A., Lee J., Lee M., Lee Z.M.P., Li Y., Li Z.X., Li M.Y., Li X., Ling F.Q., LiuY., Luthy R.G., Mendonça-Hagler L.C., de Menezes F.G.R., Meyers A.J.,Mohebbi A., Nielsen P.H., Ning D., Oehmen A., Palmer A., Parameswaran P., ParkJ., Patsch D., Reginatto V., de los Reyes F.L., Rittmann B.E., Noyola A.,Rossetti S., Shan X.Y., Sidhu J., Sloan W.T., Smith K., de Sousa O.V., Stahl D.A.,Stephens K., Tian R., Tiedje J.M., Tooker N.B., Tu Q., Van Nostrand J.D., Delos Cobos Vasconcelos D., Vierheilig J., Wagner M., Wakelin S., Wang A., WangB., Weaver J.E., Wells G.F., West S., Wilmes P., Woo S.-G., Wu L.W., Wu J.-H.,Wu L.Y., Xi C.W., Xiao N.J., Xu M.Y., Yan T., Yang Y.F., Yang M., Young M., YueH.W., Zhang B., Zhang P., Zhang Q.T., Zhang Y., Zhang T., Zhang Q., Zhang W.,Zhang Y., Zhou H.D., Zhou J.Z., Wen X.H., Curtis T.P., He Q., He Z.L., BrownM.R., Zhang T., He Z.L., Keller J., Nielsen P.H., Alvarez P.J.J., Criddle C.S.,Wagner M., Tiedje J.M., He Q., Curtis T.P., Stahl D.A., Alvarez-Cohen L.,Rittmann B.E., Wen X.H., Zhou J.Z., Global Water Microbiome C. (2019). Globaldiversity and biogeography of bacterial communities in wastewater treatmentplants. Nature Microbiology, 4(7):1183-1195.

[117] Wang S.Y., Liu H., Gu J., SunH.F., Zhang M., Liu Y*. (2019). Technologyfeasibility and economic viability of an innovative integrated ceramic membranebioreactor and reverse osmosis process for producing ultrapure water frommunicipal wastewater. Chemical Engineering Journal, 375.

[118] Wang H., Xu G.J., Qiu Z., ZhouY., Liu Y*. (2019). NOB suppression in pilot-scale mainstreamnitritation-denitritation system coupled with MBR for municipal wastewatertreatment. Chemosphere, 216, 633-639.

[119] Wang H., Liu Z.H., Zhang J.,Huang R.P., Yin H., Dang Z., Wu P.X., Liu Y*. (2019). Insights intoremoval mechanisms of bisphenol A and its analogues in municipal wastewatertreatment plants. Science of the Total Environment 692, 107-116.

[120] Sun H.F., Liu H., Wang S.Y., LiuY*. (2019). Remediation of oil spill-contaminated sands by chemical-freemicrobubbles generated in tap and saline water. Journal of Hazardous Materials,366, 124-129.

[121] Qian J., Zhou J.M., Pei X.J.,Zhang M.K., Liu Y*. (2019). Bioactivities and formation/utilization ofsoluble microbial products (SMP) in the biological sulfate reduction underdifferent conditions. Chemosphere, 221, 37-44.

[122] Meng S.J., Yin Y., Liu Y*.(2019). Exploration of a high-efficiency and low-cost technique for maximizingthe glucoamylase production from food waste. RSC Advances, 9(40), 22980-22986.

[123] Ma Y.Q., Liu Y*. (2019).Turning food waste to energy and resources towards a great environmental andeconomic sustainability: An innovative integrated biological approach.Biotechnology Advances, 37(7).

[124] Ma Y., Liu Y*., Chapter21 - Biodiesel Production: Status and Perspectives, in: A. Pandey, C. Larroche,C.-G. Dussap, E. Gnansounou, S.K. Khanal, S. Ricke (Eds.), Biofuels:Alternative Feedstocks and Conversion Processes for the Production of Liquidand Gaseous Biofuels (Second Edition), Academic Press2019, pp. 503-522.https://doi.org/https://doi.org/10.1016/B978-0-12-816856-1.00021-X.

[125] Liu Y*., Ganguly R.,Huynh H.V., Leong W.K. (2019). Platinum-Osmium Heterometallic ClustersContaining N-Heterocyclic Carbene Ligands and an Electron-Deficient TetraosmiumBy-Product. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, (14), 1966-1969.

[126] Liu Y., Gu J., Zhang M.(2019). AB processes: Towards energy self-sufficient municipal wastewatertreatment. IWA publishing.

[127] Liu H., Sun H.F., Zhang M., LiuY*. (2019). Dynamics of microbial community andtetracycline resistance genes in biological nutrient removal process. Journalof Environmental Management, 238, 84-91.

[128] Ji B., Liang J.C., Ma Y.Q., ZhuL., Liu Y*. (2019). Bacterial community and eutrophic index analysis ofthe East Lake. Environmental Pollution, 252, 682-688.

[129] Gu J., Zhang M., Wang S.Y., LiuY*. (2019). Integrated upflow anaerobic fixed-bed and single-stagestep-feed process for mainstream deammonification: A step further towardssustainable municipal wastewater reclamation. Science of the Total Environment678, 559-564.

[130] Gu J., Liu H., Wang S.Y., ZhangM., Liu Y*. (2019). An innovative anaerobic MBR-reverse osmosis-ionexchange process for energy-efficient reclamation of municipal wastewater toNEWater-like product water. Journal of Cleaner Production, 230, 1287-1293.

[131] Gao Z., Ma Y.Q., Ma X.Y., WangQ.H., Liu Y*. (2019). A novel variable pH control strategy for enhancinglipid production from food waste: Biodiesel versus docosahexaenoic acid. ENERGYCONVERSION AND MANAGEMENT, 189, 60-66.

[132] Feng H., Liang L.L., Liu Y.,Huang Z.H., Li L. (2019). Efficient nano-regional photocatalyticheterostructure design the manipulation of reaction site self-quenching effect.Applied Catalysis B: Environment and Energy, 243, 220-228.

受邀书籍章节

1.     Ma YQ and Liu Y. (2019)Biodieselproduction: Status and perspectives. In: Biomass, Biofuels and BiochemicalsSeries, Chapter 21, pp 503-522, Elsevier.

2.     Hu M.,Guo DB, Ma YQ and Liu Y. (2019).Thermal-chemical treatment of sewage sludge towards enhanced energy andresource recovery. Chapter 10 in Resource Recovery and Reuse for SustainableFuture, Wiley.

3.     EsraUçkun Kiran and Liu Y. (2015) Renewableenergy derived from food waste and co-digestion of food waste with wasteactivated sludge. In: Renewal Energy. Springer.

4.     LiuY.J., Liu Y. (2012) Membrane bioreactor for wastewaterreclamation. In: Wastewater Treatment:Biological Methods, Technology and Environmental Impact. NovaScience Publisher, New York.

5.     Liu Y.J., Sun D. and Liu Y.(2011) Denitrification Processes for Wastewater Treatment. In: Denitrification: Processes, Regulation andEcological Significance, ed. by Savaglio N. and Puopolo R., Nova SciencePublishers, New York.

6.     Liu Y.Q., Liu Y., TayJ.H. and Hung Y.T. (2010) Biological Phosphorus Removal Processes. pp 497-521,In: Environmental Bioengineering, ed. by Lawrence K. Wang, Tay J.H., Tay S.T.L.and Hung Y.T., Springer, New York.

7.     Jiang B., Liu Y., Chen G.H. and Paul E. (2009)Uncoupled Energy Metabolism for Sludge Reduction in the Activated SludgeProcess. In: Biochemical Engineering. Ed. by Dumont F.E. and Sacco J.A., NovaScience Publisher, New York.

8.     Lin Y.M., Tay J.H., Liu Y.and Hung Y.T. (2009) Biological nitrification and denitrificaiton processes.pp. 539-588. In: Biological Treatment Processes. Ed. by Wang L.K, Norman C.P.,Hung Y.T. Springer, New York.

9.     Shammas N.K., Liu Y.and Wang L.K. (2009) Principles and kinetics of biological processes. pp. 1-57,In: Advanced Biological Treatment Processes. Ed. by Wang L.K., Shammas N.K. andHung Y.T. Springer, New York.

10.  Tay J.H., Liu Y., TayS.T.L. and Hung Y.T. (2009) Aerobic granulation technology. pp. 109-128. In:Advanced Biological Treatment Processes. Ed. by Wang L.K., Shammas N.K. andHung Y.T. Springer, New York.

11.  Wang Z.W. and Liu Y. (2007) Modelling of Heavy MetalBiosorption by Aerobic Granules. pp. 221-245. In: New Colloid and SurfaceScience Research, ed. Lawrence V. Schwartz, Nova Science Publishers, Inc., NewYork.

12.  Liu Y. (2001) Technology for minimizing activated sludge production. pp.232-244. In: Technology for Paper Industrial Wastewater Treatment, edited byYang X.F. Chinese Chemical Industry Press.

13.  Tay J.H., Liu Q.S., Liu Y., Show K.Y.,Ivanov V., Tay S.T.L. (2005) A comparative study of aerobic granulation inpilot- and lab-scale SBRs. In: Aerobic Granular Sludge, ed. by Bathe S., de Kreuk M., McSwain B. and Schwarzenbeck N., p.125-134, IWA Publishing, London, UK, 2005.

14.  Qin L., Tay J.H., Yang S.F. and LiuY. (2004) Aerobic granulation under alternating aerobic and anaerobicconditions in sequencing batch reactors. In: Water Environmental ManagementBook Series, ed. by Lens P. and Stuetz R., pp.3-10, IWA Publishing, London, UK,2004.

招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

南开大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部