导师风采
刘维涛
浏览量:410   转发量:6

个人信息

Personal Information

  • 教授
  • 导师类别:硕士,博士生导师
  • 性别: 男
  • 学历:博士研究生

联系方式

Contact Information

  • 所属院系:环境科学与工程学院
  • 所属专业: 环境科学  、 生态学  、 环境科学与工程
  • 邮箱 : lwt@nankai.edu.cn
  • 工作电话 : -15022501171

个人简介

Personal Profile

刘维涛,博士,南开大学环境科学与工程学院教授/博士生导师。天津市第一批生态环境青年科技人才,天津市生态环境局土壤污染防治专家。主要研究方向为污染环境生态修复与食品安全、新型污染物的环境行为及生态毒性等。以第一作者或通讯作者名义发表SCI论文60余篇,H指数35,ESI高被引论文9篇。主持/参与国家重大研究计划、国家重点研发计划、国家自然科学基金等课题10余项。作为主要完成人,获得省部级奖项5项,编著/参编专著6部,授权国家发明专利5件。现任中国自然资源学会资源循环利用专业委员会副秘书长,EI期刊《中国环境科学》中青年编委、SCI期刊Land Degradation &Development、PlantPhysiology and Biochemistry、Applied Soil Ecology等特刊编辑。


  • 研究方向Research Directions
新污染物的环境行为、生态毒性及修复,环境功能材料研发及环境修复, 新污染物的环境健康效应,机器学习及其在环境中的应用
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
团队展示

“尊师重道、团结友爱、和谐氛围、积极进取”是团队的核心理念!截取图片_20250221122806


科研项目

主持的项目

1. 国家重点研发计划子课题,西北旱区土壤不同演化特征微塑料生物效应发生机制解析(2024YFC3713900),2024-2027,80万元

2. 国家重点研发计划子课题,区域重金属有效态含量和分布特征(2024YFD1701101),2024-2027,30万元

3. 国家重点研发计划子课题,生物修复载体固定化菌剂与酶制剂制备技术(2020YFC1808800),2020-2024,150万元

4. 国家自然科学基金面上项目,典型微(纳)米塑料-蔬菜作物交互作用及其机制(32171614),2022-2025,58万元

5. 国家自然科学基金面上项目,地肤修复盐碱土镉污染的潜力及其根际和体内微界面过程(41471411),2015-2018,85万元

6. 国家自然科学基金青年项目,丰源新3号大白菜低积累镉的主要根际和分子机理(21107052),2012-2014,26万元


研究成果

论文

1.      Li, J., Yu, M., Liu, W.*, Zheng, Z., Liu, J., Shi, R., Zeb,A., Wang, Q., Wang, J. 2025.  Effects ofcompound immobilized bacteria on remediation and bacterial community ofPAHs-contaminated soil. Journal of Hazardous Materials 485,136941.

2.      Zeb, A., Liu, W.*, Ali, N., Shi, R., Zhao, Y., Wang,J., Wang, Q., Khan, S., Baig, A.M., Liu, J., Khan, A.A., Ge, Y., Li, X., Yin,C. 2024. Impact of Pristine and Aged Tire Wear Particles on Ipomoea aquatica and RhizosphericMicrobial Communities: Insights from a Long-Term Exposure Study. EnvironmentalScience & Technology 58(48), 21143-21154.

3.      Wang, Q., Liu, W.*, Zhou, Q. *, Wang, S., Mo, F., Wu,X., Wang, J., Shi, R., Li, X., Yin, C., Sun, Y. 2024. Planting Enhances SoilResistance to Microplastics: Evidence from Carbon Emissions and DissolvedOrganic Matter Stability. Environmental Science & Technology58(48), 21327-21338.

4.      Li, X., Liu, W.*, Ge, Y., Shi, R., Yin, C., Liu, J.,Zhao, Y., Wang, Q., Wang, J., Mo, F., Zeb, A., Yu, M. 2024. Response of Ceratophyllum demersum L. and itsepiphytic biofilms to 6PPD and 6PPD-Q exposure: Based on metabolomics andmicrobial community analysis. Journal of Hazardous Materials 480,136420.

5.      Liu, J., Yu, M., Li, X., Ge, Y., Shi, R., Bao, Y., Liu, J., Liu, W.*. 2024. Phytotoxicity of6PPD and its oxidized product 6PPD-Q on pakchoi (Brassica rapa L. ssp. chinensis).LandDegradation & Development 35(15), 4596-4606.

6.      Shi, R., Liu, W.*, Liu, J., Li, X., Zeb, A., Wang, Q.,Wang, J., Sun, Y. 2024. Earthworms Enhance Crop Resistance to Insects UnderMicroplastic Stress by Mobilizing Physical and Chemical Defenses. EnvironmentalScience & Technology 58(37), 16282-16290.

7.      Ge, Y., Liu, J., Shi, R., Li, X., Zeb, A., Wang, Q., Wang,J., Zhao, Y., Yu, M., Yin, C., Xiong, H., Liu, W.*. 2024. Environmentalconcentrations of 6PPD and 6PPD-Q cause oxidative damage and alter metabolismin Eichhornia crassipes. Scienceof The Total Environment 951, 175736.

8.      Zheng, Z., Liu, W.*, Li, J., Yu, M., Zeb, A., Zhou, Q.,Lin, M*. 2024. Remediation effect and mechanism of immobilizedlaccase on actual trichloromethane-contaminated soil samples. Journalof Environmental Chemical Engineering 12(5), 113855.

9.      Wang, J., Liu, W.*, Zeb, A., Wang, Q., Mo, F., Shi, R.,Sun, Y. and Wang, F. 2024. Biodegradable Microplastic-Driven Change in Soil pHAffects Soybean Rhizosphere Microbial N Transformation Processes. Journalof Agricultural and Food Chemistry 72(30), 16674-16686.

10.    Shi, R., Liu, W.*, Liu, J., Zeb, A., Wang, Q., Wang,J., Li, J., Yu, M., Ali, N. and An, J*. 2024. Earthworms improvethe rhizosphere micro-environment to mitigate the toxicity of microplastics totomato (Solanum lycopersicum). Journalof Hazardous Materials 472, 134578.

11.    Shi, R., Liu, W.*, Lian, Y., Wang, X., Men, S., Zeb,A., Wang, Q., Wang, J., Li, J., Zheng, Z., Zhou, Q. *, Tang, J., Sun, Y., Wang,F., Xing, B.*, 2024. Toxicity Mechanisms of Nanoplastics on Crop Growth,Interference of Phyllosphere Microbes, and Evidence for Foliar Penetration andTranslocation. Environmental Science & Technology 58(2),1010-1021.

12.    Zeb, A., Liu, W.*, Ali, N., Shi, R., Wang, Q., Wang,J., Li, J., Yin, C., Liu, J., Yu, M., Liu, J., 2024. Microplastic pollution interrestrial ecosystems: Global implications and sustainable solutions. Journalof Hazardous Materials 461, 132636.

13.    Zeb, A., Liu, W.* Ali, N., Shi, R., Lian, Y., Wang,Q., Wang, J., Li, J., Zheng, Z., Liu, J., Yu, M., Liu, J., 2024. Integratingmetabolomics and high-throughput sequencing to investigate the effects of tirewear particles on mung bean plants and soil microbial communities. EnvironmentalPollution 340, 122872.

14.    Wang, J., Liu, W.*,Wang, X., Zeb, A., Wang, Q., Mo, F., Shi, R., Liu, J., Yu, M., Li, J., Zheng,Z., Lian, Y., 2024. Assessing stress responses in potherb mustard (Brassicajuncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insightsfrom physiology, oxidative damage, and metabolomics. Science of The TotalEnvironment 907, 167920.

15.    Li, J., Liu, W.*, Lian, Y., Shi,R., Wang, Q., Zeb, A., 2023. Single and combined toxicity of polystyrenenanoplastics and arsenic on submerged plant Myriophyllum verticillatumL. Plant Physiology and Biochemistry 194, 513-523.

16.    Shi, R., Liu, W.*, Lian, Y., Zeb, A., Wang, Q., 2023. Type-dependent effects of microplasticson tomato (Lycopersicon esculentum L.): Focus on root exudates andmetabolic reprogramming. Science of The Total Environment 859,160025.

17.    Wang, J., Li, J., Liu, W.*, Zeb, A., Wang, Q., Zheng, Z., Shi, R., Lian, Y.,Liu, L. *, 2023. Three typicalmicroplastics affect the germination and growth of amaranth (Amaranthusmangostanus L.) seedlings. Plant Physiology and Biochemistry 194,589-599.

18.    Wang, Q., Liu, W.*, Meng, L., Zeb, A., Mo, F., Wang,J., Shi, R., 2023. The interfacial interaction between Dechlorane Plus (DP) andpolystyrene nanoplastics (PSNPs): An overlooked influence factor for the algaltoxicity of PSNPs. Science of The Total Environment 905, 167129.

19.    Wang, Q., Liu, W.*, Zeb, A., Lian, Y., Shi, R., Li, J.,Zheng, Z., 2023. Toxicity effects of polystyrene nanoplastics and arsenite on Microcystisaeruginosa. Science of The Total Environment, 874, 162496.

20.    Wang, Q., Meng, L., Liu, W.*, Zeb, A., Shi, R., Lian,Y., Su, C.*, 2023. Single and combined effects of polystyrenenanoplastics and Cd on submerged plants Ceratophyllum demersum L. Scienceof The Total Environment 872, 162291.

21.    Zheng, Z., Liu, W.*, Zhou, Q., Li,J., Zeb, A., Wang, Q., Lian, Y., Shi, R., Wang, J., 2023. Effects ofco-modified biochar immobilized laccase on remediation and bacterial communityof PAHs-contaminated soil. Journal of Hazardous Materials 443,130372.

22.    Lian, J., Liu W. *, Sun, Y., Men, S., Wu, J., Zeb, A.,Yang, T., Ma, L.Q., Zhou, Q. *, 2022. Nanotoxicological effects andtranscriptome mechanisms of wheat (Triticum aestivum L.) under stress ofpolystyrene nanoplastics. Journal of Hazardous Materials, 423: 127241.

23.    Lian Y., Liu W.*,Shi R., Zeb A., Wang Q., Li J., Zheng Z., Tang J. 2022. Effects of polyethyleneand polylactic acid microplastics on plant growth and bacterial community inthe soil. Journal of Hazardous Materials, 435: 129057.

24.    Shen, M., Liu, W.*, Zeb, A., Lian,J., Wu, J., Lin, M., 2022. Bioaccumulation and phytotoxicity of ZnOnanoparticles in soil-grown Brassica chinensis L. and potential risks. Journalof Environmental Management 306, 114454.

25.    Shi R., Liu W.*,Lian Y., Wang Q., Zeb A., Tang J., 2022 Phytotoxicity of polystyrene,polyethylene and polypropylene microplastics on tomato (Lycopersicon esculentumL.), Journal of Environmental Management, 317:115441.

26.    Shi, R., Liang, L., Liu, W.*, Zeb, A., 2022. Kochia scoparia L., a newfoundcandidate halophyte, for phytoremediation of cadmium-contaminated saline soils.Environmental Science and Pollution Research 29(29), 44759-44768.

27.    Zeb, A., Liu W.*, Meng, L., Lian, J., Wang, Q., Lian,Y., Chen, C., Wu, J., 2022. Effects of Polyester Microfibers (PMFs) and Cadmiumon Lettuce (Lactuca sativa) and the Rhizospheric Microbial Communities:A Study Involving Physio-biochemical Properties and Metabolomic Profiles. Journalof Hazardous Materials, 424: 127405.

28.    Zeb A., Liu W.*,Shi R., Lian Y., Wang Q., Tang J., Lin D*. 2022. Evaluating the knowledgestructure of micro-and nanoplastics in terrestrial environment throughscientometric assessment. Applied Soil Ecology, 177: 104507.

29.    Zeb, A., Liu,W.*, Lian, Y.,Zheng, Z., Meng, L., Chen, C., Song, X., 2022. Selection and breeding ofpollution-safe cultivars (PSCs)—An eco-friendly technology for safe utilizationof heavy metal(loid) contaminated soils. Environmental Technology &Innovation 25, 102142.

30.    Lian, J., Liu W.*, Meng, L., Wu, J., Zeb, A., Cheng,L., Lian, Y., Sun, H., 2021. Effects of microplastics derived frompolymer-coated fertilizer on maize growth, rhizosphere, and soil properties. Journalof Cleaner Production, 318: 128571.

31.    Lian, J., LiuW.*, Meng, L., Wu, J., Chao, L., Zeb, A., Sun Y*,2021. Foliar-appliedpolystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality oflettuce (Lactuca sativa L.). EnvironmentalPollution, 280: 116978. (ESI高被引论文)

32.    Liu, W.*, Wu, J., Lian,J., Zhang, X., Zeb, A., Zhou, Q., Sun, Y., 2021. Potential use of Impatiensbalsamina L. for bioremediation of lead and polychlorinated biphenylcontaminated soils. Land Degradation & Development 32(13), 3773-3784.

33.    Meng, L., Zhao, L., Liu, W.*, Lian, J., Chao, L., 2021. Risk assessment ofbioavailable heavy metals in the water and sediments in the Yongding New River,North China. Environmental Monitoring and Assessment 193(9), 589.10.1007/s10661-021-09367-6.

34.    Wu, J., Liu, Liu W.*, Zeb, A., Lian, J., Sun, Y., Sun,H., 2021. Polystyrene Microplastics Interaction with Oryza sativa:Toxicity and Metabolic Mechanism. Environmental Science: Nano, 8:3699-3710.

35.    Zeb, A., Liu, W.*, Wu, J., Lian,J., Lian, Y., 2021. Knowledge domain and emerging trends in nanoparticles andplants interaction research: A scientometric analysis. NanoImpact21, 100278.

36.    Lian J., Wu J., Xiong H., Zeb A., YangT., Su X., Su L., Liu W*. 2020. Impactof polystyrene nanoplastics (PSNPs) on seed germination and seedling growth ofwheat (Triticum aestivum L.). Journal of Hazardous Materials,385: 121620. (ESI高被引论文)

37.    Lian J., Wu J., Zeb A.,Zheng S., Ma T., Peng F., Tang J., Liu W*. 2020. Do polystyrene nanoplastics affect the toxicity of cadmiumto wheat (Triticum aestivum L.)? Environmental Pollution, 263: 114498. (ESI高被引论文)

38.    Lian, J., Zhao, L., Wu, J., Xiong, H., Bao, Y., Zeb, A.,Tang, J., Liu, W.*, 2020. Foliarspray of TiO2 nanoparticles prevails over root application inreducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zeamays L.). Chemosphere 239, 124794. (ESI高被引论文)

39.    Liu, W.*, Zeb, A., Lian,J., Wu, J., Xiong, H., Tang, J., Zheng, S., 2020. Interactions of metal-basednanoparticles (MBNPs) and metal-oxide nanoparticles (MONPs) with crop plants: acritical review of research progress and prospects. Environmental Reviews28(3), 294-310.

40.    Zeb, A., Li, S., Wu, J., Lian, J., Liu, W.*, Sun, Y., 2020. Insightsinto the mechanisms underlying the remediation potential of earthworms incontaminated soil: A critical review of research progress and prospects. Scienceof The Total Environment 740, 140145.

41.     Zhao,L., Liu, W.*, Lian, J., Shen,M., Huo, X., 2020. Effects of electric fields on Cd accumulation andphotosynthesis in Zea mays seedlings. Journal of EnvironmentalManagement 276, 111328.

42.     Liang,L.C., Liu, W.*, Sun, Y.B., Huo,X.H., Li, S., Zhou, Q.X., 2017. Phytoremediation of heavy metal contaminatedsaline soils using halophytes: current progress and future perspectives. EnvironmentalReviews 25(3), 269-281. 10.1139/er-2016-0063.

43.     Liu, W.,Liang, L., Zhang, X., Zhou, Q. *,2015. Cultivar variations in cadmium and lead accumulation and distributionamong 30 wheat (Triticum aestivum L.) cultivars. EnvironmentalScience and Pollution Research 22(11), 8432-8441.

44.     Liu, W.,Zhou, Q.*,Zhang, Z., Hua, T., Cai, Z., 2011. Evaluation of cadmium phytoremediationpotential in Chinese cabbage cultivars. Journal of Agricultural and FoodChemistry 59(15), 8324-8330.

45.     Liu, W.,Zhou, Q.*,Zhang, Y., Wei, S., 2010. Lead accumulation in different Chinese cabbagecultivars and screening for pollution-safe cultivars. Journal ofEnvironmental Management 91(3), 781-788.

46.     Liu, W.,Zhou, Q.*,An, J., Sun, Y., Liu, R., 2010. Variations in cadmium accumulation amongChinese cabbage cultivars and screening for Cd-safe cultivars. Journal ofHazardous Materials 173(1-3), 737-743.

47.     Liu, W.,Zhou, Q.*,Sun, Y., Liu, R., 2009. Identification of Chinese cabbage genotypes with lowcadmium accumulation for food safety. Environmental Pollution 157(6),1961-1967.

专著

1.     Zeb A., Liu W.T.*, Zhang Y., 2021. Effects ofNanoparticles on Alleviating Phytotoxicity of Soil Heavy Metals: Potential forEnhancing Phytoremediation, in: Faizan, M., Hayat, S., Yu, F. (Eds.),Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance StressTolerance. Springer International Publishing, Cham, pp. 327-344.

2.     Liu W.T., Zhou Q*., Li X.,2018. Systematic Selection and Identification of Vegetable Cultivars with LowHeavy Metal Accumulation and for Food Safety, in: Luo, Y., Tu, C. (Eds.),Twenty Years of Research and Development on Soil Pollution and Remediation inChina. Springer Singapore, Singapore, pp. 413-427.

3.     Liu W.T., Zhang X., Liang L., et al. (2015). Phytochelatin and Oxidative StressUnder Heavy Metal Stress Tolerance in Plants. Reactive Oxygen Species andOxidative Damage in Plants Under Stress. DK Gupta, Palma JM and Corpas FJ,Springer International Publishing: 191-217. (https://pan.baidu.com/s/1pKNaGdH)

专利

1. 刘维涛, 郑泽其, 李剑涛. 一种基于氢氧化钠和四氯化三铁晶体复合改性生物炭固定化漆酶的制备方法. 授权日期:2024年10月11日,专利号:ZL202111383171.3.

2. 周启星,刘维涛, 魏树和. 一种筛选重金属低积累作物品种的方法,授权日期:2012年12月12日,专利号:ZL200810229329.X

3. 魏树和,胡亚虎,周启星,刘维涛,杨传杰. 一种镉-多环芳烃复合污染菜地土壤修复与利用的方法. 授权日:2012.5.30,专利号:ZL200910013170.2.

4. 王林,周启星, 于志国, 刘维涛. 一种联合强化修复镉污染土壤的方法. 授权日2011.5.11, 专利:ZL200710159037.9

科研奖励

1. 刘维涛(8/11); 典型区土壤污染诊断及修复植物的响应机制, 天津市科技局,自然科学特等奖,2020 (周启星、孙约兵、胡献刚、刘家女、王林、欧阳少虎、徐应明、刘维涛、孙挺、穆莉、安婧)

2. 刘维涛(6/6); 重金属污染土壤修复技术创新,中国发明家协会,发明创业成果奖一等奖,2018(周启星、罗启仕、赵远、李凤祥,华涛、刘维涛)

3. 刘维涛(9/19); 资源循环科学与工程概论,化学工业出版社. 中国石油和化学工业联合会2014年中国石油和化学工业优秀出版物奖(图书奖),一等奖,2015(周启星、崔素萍、戴铁军、华涛、焦刚珍、鞠美庭、李凤祥、刘汝涛、刘维涛、刘莹、钱庆荣、秦松岩、任京成、邵超峰、沈伯雄、王志宏、席晓丽、许兢、周明华)

4.   刘维涛(5/7); 农产品产地重金属污染阻隔与修复机制,中国农业科学院, 中国农业科学院科学技术成果奖,青年科技创新奖, 2018(孙学兵、徐应明、梁学峰、王林、刘维涛、赵玉杰;沈玉君)

5. 刘维涛(4/9); 农产品产地重金属污染阻控与修复关键技术及应用, 神农中华农业科技奖三等奖,2019 (孙约兵,郑顺安,徐应明,刘维涛,梁学峰,王林,王农,师荣光,张福合)


招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

南开大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部